USB Security Token
This design implements a USB security token powered by an STM32 microcontroller. The device is engineered for compactness and efficient PCB integration while ensuring robust security features. Key elements of the design include: - **Microcontroller Core:** A STM32F103T8U6 serves as the primary processing unit, handling USB communication and security protocols. - **USB Interface:** A USB-A plug provides connectivity to the host. Dedicated net portals ensure proper routing of the VBUS, D+, D–, and ground signals. - **Power Regulation:** A low-dropout regulator supplies a stable 3.3V operating voltage, ensuring low noise and proper current supply to the microcontroller and peripherals. - **Signal Conditioning and EMI Filtering:** An EMI filter is used to maintain signal integrity and reduce interference while preserving the security token’s functionality. - **Synchronous Elements:** A ceramic resonator is incorporated to provide a precise clock source for USB data transfer and microcontroller operations. - **Additional Components:** Surface-mount resistors, capacitors, and LED indicators are deployed to ensure proper conditioning, decoupling, and status feedback. Their compact 0402 packages facilitate a highly integrated design. - **Connectivity and Net Portals:** Custom net portals are used throughout the schematic to streamline connectivity and PCB layout, keeping the design modular and easy to modify. This USB security token is designed with industry-standard components and robust connectivity to ensure secure, reliable operation in portable security applications. #USBToken #STM32 #PCBDesign #SecurityTechnology #PortableSecurity #Microcontrollers #USBInterface #PowerRegulation #EMIProtection #CompactDesign... show more253 Comments
29 Stars
[Example] Simulation of Astable Multivibrator Circuit
A simulated blinking LED circuit using an astable multivibrator a.k.a "flip-flop" as a square wave generator. It also includes PCB layout of the project.99 Comments
15 Stars
ESP32-S3 - PLC for Home and Small industry
ESP32-S3-PLC For Home and Small Industry, include 8 12V SSR to control DC and AC Current, 8 isolated I/O and a ESP32 as a brain with a USB C to upload the code and the connectivity advantages of the ES32 like WIFI and Bluetooth.... show more9 Comments
12 Stars
Mosfet board with driver
This is a IR2110 high side mosfet driver circuit with mosfet included. This is a circuit I use often and I believe it is time to give it its own board and project.129 Comments
9 Stars
Raspberry Pi 5 Hat with PCIe Template
Template for Raspberry Pi 5 Model Shield. Include an official pinout so you will always know Raspberry Pi names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Raspberry Pi itself along with the board outline on the silkscreen. #RaspberryPi #Raspberry #RaspberryPi5 #raspberry #Pi #RPi #Shield #template #project #project-template... show more54 Comments
4 Stars
ESP32 Dual Ultrasonic Water Level Monitoring System
This project is designed to measure water level of two tanks using ultrasonic sensors interfaced with the ESP32 microcontroller. The design leverages the processing power and wireless connectivity of the ESP32 to accurately monitor water levels and support automated water management processes. Key components include two ultrasonic sensors for precise distance measurement, robust voltage regulation using an LM2596 buck converter, and reliable power management circuits. Its modular design approach facilitates easy expansion and integration with other systems, making it an ideal solution for both DIY enthusiasts and professionals in automated fluid control and IoT applications. #ESP32 #UltrasonicSensor #WaterLevelSensor #LM2596 #VoltageRegulator #ModularDesign #IoT #DIYProjects #ElectronicsDesign #automation... show more4 Stars
Strangest LED Blinker TestSite
Project Overview: This project is an enhanced LED blinking circuit that goes beyond a simple 555 timer-based design. It incorporates additional features such as random blinking patterns, speed control, and a start/stop function. The project utilizes a microcontroller, such as an Arduino or Raspberry Pi, to control the blinking patterns, speed, and start/stop functionality. LED Blinking: The board features a total of 8 LEDs that blink in various random patterns. When the board is powered on, even before user interaction, the LEDs start blinking randomly, creating an eye-catching display. Each LED has its own current-limiting resistor to ensure proper current flow and prevent damage. The microcontroller is programmed to generate random blinking patterns for the LEDs, ensuring that the LEDs do not blink in a predictable or sequential order. This random blinking adds an element of unpredictability and visual interest to the project. Speed Control: The board includes two speed control buttons that allow the user to adjust the blinking speed of the LEDs. Button 1 is designated as the "fast" button, increasing the blinking speed when pressed, while Button 2 is designated as the "slow" button, decreasing the blinking speed when pressed. The speed control provides a range of blinking speeds, from a slow, gradual blink to a rapid, strobe-like effect. The microcontroller monitors the state of the speed control buttons and adjusts the blinking speed accordingly. Start/Stop Functionality: A third button serves as a start/stop control. When pressed, it toggles the blinking of the LEDs on or off. This allows the user to freeze the blinking pattern at any desired moment or resume the blinking when desired. The microcontroller handles the start/stop functionality by turning the LEDs on or off based on the state of the start/stop button. Manual Speed Adjustment: In addition to the speed control buttons, the board includes a potentiometer or variable resistor. This component allows the user to manually adjust the blinking speed of the LEDs by turning the knob or sliding the control. The manual speed adjustment provides more precise and customizable control over the blinking speed compared to the preset speeds of the buttons. The microcontroller reads the analog value from the potentiometer and adjusts the blinking speed accordingly. Power and Connectivity: The board is powered through a USB-C or USB-micro B connector, allowing it to be easily connected to a power source such as a computer or wall adapter. A voltage regulator may be included to ensure a stable and appropriate voltage supply to the components. A power switch is incorporated to conveniently turn the board on or off.... show more224 Comments
4 Stars
Arduino Nano Shield Template
Template for Arduino Nano Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Nano itself along with the board outline on the silkscreen. #Arduino #Nano #Shield #template #project #project-template... show more2 Comments
3 Stars
ESP32-S2-MINI-1U Reference Design
This project is a reference design for an ESP32-S2-MINI-1U based device. It features USB-C for power and data transfer, onboard voltage regulation, and multiple peripheral connections. It also includes a CH340C for USB to serial conversion #referenceDesign #project #ESP32 #ESP32S2 #RF #WIFI #MCU #referenceDesign #simple-embedded #espressif #template #reference-design... show more20 Comments
3 Stars
ESP-WROOM-02U Reference Design
This project is a reference design for an ESP-WROOM-02U based device. It features USB-C for power and data transfer, onboard voltage regulation, and multiple peripheral connections. It also includes a CH340C for USB to serial conversion #referenceDesign #project #ESP8266 #WROOM #RF #WIFI #MCU #referenceDesign #simple-embedded #espressif #template #reference-design #polygon... show more19 Comments
3 Stars
[Example] Simulation of Astable Multivibrator Circuit
A simulated blinking LED circuit using an astable multivibrator a.k.a "flip-flop" as a square wave generator. It also includes PCB layout of the project.9 Comments
3 Stars
ESP32-WROOM-32E Reference Design ePe2
This project is a reference design for an ESP32-WROOM-32E based device. It features USB-C for power and data transfer, onboard voltage regulation, and multiple peripheral connections. It also includes a CH340C for USB to serial conversion #referenceDesign #project #ESP32 #ESP32WROOM #RF #WIFI #MCU #referenceDesign #simple-embedded #espressif #template #reference-design... show more9 Comments
3 Stars
ESP32-S2-MINI-2 Reference Design
This project is a reference design for an ESP32-S2-MINI-2 based device. It features USB-C for power and data transfer, onboard voltage regulation, and multiple peripheral connections. It also includes a CH340C for USB to serial conversion #referenceDesign #project #ESP32 #ESP32S2 #RF #WIFI #MCU #referenceDesign #simple-embedded #espressif #template #reference-design #polygon... show more8 Comments
3 Stars
BQ25895 Reference Design
This project is a reference design based on the BQ25895, a single cell Li-Ion battery charger. It manages the power between an external power source (VIN), a Li-Ion battery (BAT), and a system power rail (SYS). Key features include power-path management, battery thermistor monitoring, and charge status indication. #project #BQ25895 #ReferenceDesign #charger #BatteryManagemen #referenceDesign #bms #texas-instruments #template #reference-design #polygon... show more14 Comments
2 Stars
Raspberry Pi 3B+ Hat Template
Template for Raspberry Pi 3 Model B+ Shield. Include an official pinout so you will always know Raspberry Pi names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Raspberry Pi itself along with the board outline on the silkscreen. #RaspberryPi #Raspberry #raspberry #raspberrypi #Pi #RPi #Shield #template #project #project-template... show more10 Comments
2 Stars
ESP32-S3 - PLC for Home and Small industry
ESP32-S3-PLC For Home and Small Industry, include 8 12V SSR to control DC and AC Current, 8 isolated I/O and a ESP32 as a brain with a USB C to upload the code and the connectivity advantages of the ES32 like WIFI and Bluetooth.... show more6 Comments
2 Stars
MSP430FR6035IPZ
The Texas Instruments MSP430FR604x and MSP430FR603x family comprises highly integrated ultrasonic sensing and measurement system-on-chips (SoCs) designed specifically for water and heat metering applications. The featured components, including MSP430FR6047, MSP430FR60471, MSP430FR6045, MSP430FR6037, MSP430FR60371, and MSP430FR6035, deliver best-in-class ultrasonic water flow measurement with ultra-low power consumption. These microcontrollers excel with an active mode current consumption of approximately 120 µA/MHz and a standby mode power draw as low as 450 nA with a real-time clock (RTC) enabled. Key functionalities include a high-precision differential time-of-flight (dTOF) accuracy of less than 25 ps, integrated analog front-end, programmable pulse generation (PPG), and an analog comparator. They also interface directly with standard ultrasonic sensors up to 2.5 MHz and feature up to 256KB FRAM, robust RAM options, and integrated LCD drivers for up to 264 segments. The embedded low-energy accelerator (LEA) enhances digital signal processing capabilities, making these components ideal for battery-powered metering solutions. Peripherals include multiple enhanced serial communication interfaces, high-performance ADCs, DMA controllers, and a suite of timers and encryption modules. These features combine to offer a powerful solution for high-accuracy, low-cost, and ultra-low-power metering applications.... show more4 Comments
2 Stars
SelfCare Plant Final Design
This project is a reference design for an ESP32-WROOM-32E based device. It features USB-C for power and data transfer, onboard voltage regulation, and multiple peripheral connections. It also includes a CH340C for USB to serial conversion #referenceDesign #project #ESP32 #ESP32WROOM #RF #WIFI #MCU #referenceDesign #simple-embedded #espressif #template #reference-design... show more173 Comments
2 Stars
Guitar Pedal Template
Guitar pedal starter template based on project by Mark Wu. Includes schematic and PCB layout for basic DIY pedal hardware. This includes two 1/4" jacks (one for input and one for output), a 9V power supply (including LED), a 3PDT true bypass wiring setup, and an example potentiometer that can be copy/pasted throughout the circuit. The headers are meant to be unpopulated so that wires can be soldered to the pads. PCB design rules imported from the JLCPCB 2-layer stackup template. #template... show more1 Comment
2 Stars
EV5920-5048-V-00A Evaluation Board
This is a recreation of the [EV5920-5048-V-00A](https://www.monolithicpower.com/en/ev5920-5048-v-00a.html) from MPS which demonstrates a MP5920 Hot-Swap controller commanding 5 MP5048 e-fuses in parallel. WIP Items: -Routing In flux, this project demonstrates hierarchal design through the use of modules. Additionally, parametric symbols are used extensively to improve schematic cleanliness. Components in the canvas are locked because their positions correspond to the same positions as the original layout. Changelog from Original MPS Design: - Not including GPIO2 or GPIO3 as included in the original board due to NC pin name on the IC. - PC1 and PC2 footprints are 5mm in pitch and 12.5mm in diameter rather than the 16mm diameter in the original layout. This change corresponds with the selected part more accurately. -Renamed Designators to be More Verbose... show more1 Comment
2 Stars
Arduino Uno R3 Shield Template 31vK
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more66 Comments
1 Star
TSAL_KE1_Green
Designing a Tractive System Active light(TSAL) circuit for an Electric Vehicle which does the following operations 1. The TSAL itself must have a red light, flashing continuously with a frequency between 2 Hz and 5 Hz and a duty cycle of 50%, active if and only if the LVS is active and the voltage across DC-link capacitors exceeds half the nominal TS voltage 2. The TSAL itself must have a green light, continuously on, active if and only if the LVS is active and ALL of the following conditions are true: ● All AIRs are opened. ● The pre-charge relay is opened. ● The voltage at the vehicle side of the AIRs inside the TSAC does not exceed 60 VDC or 50 VAC RMS. This schematic will include only the Green Light logic. We have to take proper care of High voltage and Low voltage isolation in this schematic because it will have to be implemented on the PCB as well.... show more39 Comments
1 Star
Arduino Uno R3 Shield Template
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more37 Comments
1 Star
Arduino Uno R3 Shield for PureData VER1.3
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more34 Comments
1 Star
Arduino Uno R3 Relay Shield
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more33 Comments
1 Star
Playground: LoSS - ST LoRa Data Logger
The LoSS - ST LoRa Data Logger project is designed to collect and log data using LoRa connectivity. It includes interfaces for JTAG and UART communication. Key components include multiple capacitors, resistors, a crystal oscillator, and an NXP MCU. The device interacts with various sensors and transmits data periodically using LoRa technology. Interface elements include buttons and a display for user interaction.... show more21 Comments
1 Star
Webcam & TouchKey Laptop PCB
This project involves designing a PCB for the lid assembly of an open-source laptop. The design integrates various sensors, including a microphone, camera, and ambient light sensor, ensuring precise alignment with the display glass. It features touch sensors to control LED lighting, spring-loaded contacts for touch-key interaction, and 3D-printed light diffusers for efficient lighting. Additionally, the PCB includes a power management system with status LEDs and a PFC for connecting to the external laptop PCB. The goal is to create a versatile, upgradeable, and user-friendly component for the laptop's lid. Specific parts of the project include 1. Microphone - Audio input capture 2. Ambient Light Sensor Module - Light intensity measurement 3. Camera - Video capture 4. LDO Regulators (3 TLV74 Series) - Voltage regulation for different components 5. Crystal - Clock generation 6. Touch Sensor Controller - Touch-key interaction 7. Flip-Flop - State keeping in logic circuits 8. LEDs (LTRBR37G Series) - Lighting indication 9. FPC Connector - Interface with main laptop PCB... show more15 Comments
1 Star
USB Type-C FUSB302 Template
Programmable USB Type‐C Controller with Power Delivery(PD) support. Include ESD Protection Diodes. #project-template #USB #typec #powerdelivery #template... show more10 Comments
1 Star
Raspberry Pi 5 Hat Template
Template for Raspberry Pi 5 Model Shield. Include an official pinout so you will always know Raspberry Pi names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Raspberry Pi itself along with the board outline on the silkscreen. #RaspberryPi #Raspberry #RaspberryPi5 #raspberry #Pi #RPi #Shield #template #project #project-template... show more9 Comments
1 Star
TPSM64404RCHR
The TPSM64404, TPSM64406, and TPSM64406E from Texas Instruments are highly integrated synchronous buck DC/DC power modules designed for applications requiring high power density and low EMI. These modules feature integrated MOSFETs, inductors, and controllers, supporting a wide input voltage range of 3V to 36V and adjustable output voltages from 0.8V to 16V. The devices are available in a compact 6.5mm × 7.0mm × 2mm overmolded package and are capable of operating within a junction temperature range of -40°C to 125°C, with the TPSM64406E extending to -55°C. The TPSM6440xx series offers ultra-high efficiency, achieving peak efficiencies greater than 93.5%, and includes an external bias option for improved performance. The modules are designed to minimize conducted and radiated EMI, meeting CISPR 11 and 32 Class B emissions standards. They support dual output or multiphase single output configurations, making them suitable for test and measurement, aerospace and defense, factory automation, and control applications. Key features include precision enable input, open-drain PGOOD indicator, overcurrent protection, thermal shutdown, and a versatile configuration for scalable power supplies.... show more5 Comments
1 Star
Arduino Uno R3 Shield Template
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more1 Comment
1 Star
Arduino Uno R3 Shield Template
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more1 Comment
1 Star
Arduino Uno R3 Shield Template 4wps
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more1 Comment
1 Star
RES-1K-002
The Ariel AI Chip, a pioneering component in the field of artificial intelligence hardware, integrates advanced features designed to enhance computational efficiency and AI processing capabilities. This chip is distinguished by its utilization of a quad-core CPU with a clock speed of 2GHz, operating on a radical transistor architecture that promises significant improvements in speed and power efficiency. Key components that constitute the Ariel AI Chip include a DC power supply with a 5V output (DCPS-5V), NPN transistors (NPN-TRANS-001 and NPN-TRANS-002) that serve as the fundamental switching elements, precision resistors (RES-1K and RES-1K-002) each with a resistance of 1kΩ, and a capacitor (CAP-10UF) rated at 10μF to stabilize voltage and filter noise. This chip is designed for integration into systems requiring advanced AI capabilities, offering a comprehensive solution for developers looking to leverage machine learning and artificial intelligence in their applications. With its innovative architecture and component selection, the Ariel AI Chip stands out as a versatile and powerful tool for a wide range of AI applications, from embedded systems to more complex computational platforms.... show more1 Comment
1 Star
CheckIt_mini
CheckIt is a daily habit tool. When you complete a habit, flip a switch, then an LED lights up. Future work will include wiring the 24pin FPC port to the Pico which causes an e-paper screen to display a message when a switch is flipped. This PCB runs using a Raspberry Pi Pico and has plans to be battery powered similar to a digital alarm clock.... show more1 Comment
1 Star
Arduino
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more1 Comment
1 Star
Brainstorm a new project with AI [Example]
make this for me now # Device Summary & Specification Sheet ## 1. Overview A rugged, Arduino-Uno-and-Raspberry-Pi-style single-board micro-PC featuring: - Smartphone-class CPU (Snapdragon 990) - USB-C Power Delivery + 4×AA alkaline backup + ambient-light harvester - On-board Arduino-Uno-compatible ATmega328P - External NVMe SSD via USB3 bridge & optional Thunderbolt 3 eGPU support - 5× USB 3.0 ports, HDMI in/out, Gigabit Ethernet & SFP fiber, Wi-Fi, Bluetooth, LoRa - 0.96″ OLED status display, 3.5 mm audio jack with codec --- ## 2. Key Specifications | Category | Specification | |--------------------|-------------------------------------------------------------------------------| | CPU | Snapdragon 990, octa-core up to 2.84 GHz | | Memory | 6 GB LPDDR4x DRAM | | Storage Interface | PCIe Gen3 ×4 → M.2 NVMe + USB 3.1 Gen1 bridge | | MCU | ATmega328P (Arduino-Uno-compatible) | | Power Input | USB-C PD up to 20 V/5 A; 4×AA alkaline backup; ambient-light photodiode boost | | Power Rails | 12 V, 5 V, 3.3 V, 1.8 V, 1.2 V via buck/buck-boost regulators | | USB Hub | 5× USB 3.0 downstream ports | | Display | 0.96″ 128×64 OLED via I²C/SPI | | Networking | 1 × Gigabit RJ45; 1 × SFP fiber; Wi-Fi 802.11ac + Bluetooth; LoRa SX1276 | | Video I/O | HDMI 2.0 input (RX) & output (TX) | | Audio | 3.5 mm jack + TLV320AIC3101 codec; Bluetooth audio | | Form Factor | Raspberry Pi–style header + Arduino-Uno shield headers; 4× standoff mounts | --- ## 3. Complete Parts List | Part | Function | Qty | |------------------------------------------------------------------------------------------------|-----------------------------------------------|-----| | [Snapdragon 990](https://www.flux.ai/search?type=components&q=Snapdragon%20990) | Main application CPU | 1 | | [LPDDR4x DRAM](https://www.flux.ai/search?type=components&q=LPDDR4x%20DRAM) | System memory | 1 | | [eMMC 64GB](https://www.flux.ai/search?type=components&q=eMMC%2064GB) | On-board storage | 1 | | [M.2 NVMe Connector](https://www.flux.ai/search?type=components&q=M.2%20NVMe%20Connector) | External SSD interface | 1 | | [JMS583](https://www.flux.ai/search?type=components&q=JMS583) | PCIe→USB 3.1 bridge for NVMe | 1 | | [Titan Ridge](https://www.flux.ai/search?type=components&q=Titan%20Ridge) | Thunderbolt 3/eGPU controller | 1 | | [STUSB4500](https://www.flux.ai/search?type=components&q=STUSB4500) | USB-C Power-Delivery controller | 1 | | [LTC4412](https://www.flux.ai/search?type=components&q=LTC4412) | Ideal-diode OR-ing | 1 | | [LTC3108](https://www.flux.ai/search?type=components&q=LTC3108) | Ambient-light (solar) energy harvester | 1 | | [Battery Holder 4×AA](https://www.flux.ai/search?type=components&q=Battery%20Holder%204xAA) | Alkaline backup power | 1 | | [TPS53318](https://www.flux.ai/search?type=components&q=TPS53318) | 6 V→5 V synchronous buck regulator | 1 | | [MCP1700-3302E/TO](https://www.flux.ai/search?type=components&q=MCP1700-3302E/TO) | 6 V→3.3 V LDO | 1 | | [TPS63060](https://www.flux.ai/search?type=components&q=TPS63060) | Buck-boost for 12 V rail (eGPU power) | 1 | | [ATmega328P](https://www.flux.ai/search?type=components&q=ATmega328P) | Arduino-Uno microcontroller | 1 | | [ESP32-WROOM-32](https://www.flux.ai/search?type=components&q=ESP32-WROOM-32) | Wi-Fi + Bluetooth co-processor | 1 | | [SX1276](https://www.flux.ai/search?type=components&q=SX1276) | LoRa transceiver | 1 | | [TUSB8041](https://www.flux.ai/search?type=components&q=TUSB8041) | 5-port USB 3.0 hub IC | 1 | | [Ethernet PHY](https://www.flux.ai/search?type=components&q=Ethernet%20PHY) | Gigabit Ethernet physical transceiver | 1 | | [SFP Cage](https://www.flux.ai/search?type=components&q=SFP%20Cage) | Fiber-optic SFP module connector | 1 | | [TDA19978](https://www.flux.ai/search?type=components&q=TDA19978) | HDMI 2.0 receiver (input) | 1 | | [TFP410](https://www.flux.ai/search?type=components&q=TFP410) | HDMI 2.0 transmitter (output) | 1 | | [TLV320AIC3101](https://www.flux.ai/search?type=components&q=TLV320AIC3101) | Audio codec for 3.5 mm jack & Bluetooth audio | 1 | | [Audio Jack 3.5mm](https://www.flux.ai/search?type=components&q=Audio%20Jack%203.5mm) | Headphone/mic port | 1 | | [SSD1306 OLED](https://www.flux.ai/search?type=components&q=SSD1306%20OLED) | Status display | 1 | --- ## 4. High-Level Design & Implementation Steps 1. **Schematic Creation** - Section off blocks: CPU + memory, power-supply, NVMe/USB bridge, MCU, wireless, USB hub, video, audio, I/O headers. - Place all parts from the list and wire per respective datasheet reference circuits. 2. **Power System** - Implement USB-C PD with STUSB4500 → buck/buck-boost & LDO rails. - Add LTC4412 to OR-ing battery pack into 6 V bus. - Include LTC3108 harvest input to 6 V bus (no recharge to AA). - Add decoupling & bulk caps per regulator datasheets; PTC fuses & ESD diodes on inputs. 3. **SoC & High-Speed Interfaces** - Break out Snapdragon 990 BGA with DDR4 routing (point-to-point). - Route PCIe Gen3 lanes to M.2 slot via JMS583 and to Titan Ridge for TB/eGPU. - Follow high-speed layout guidelines: impedance, length matching, EMI filters. 4. **MCU & Expansion Headers** - Place ATmega328P with UNO-style 2.54 mm headers; add ISP 6-pin, I²C pull-ups, reset circuit. 5. **Connectivity Blocks** - USB hub: TUSB8041 + ESD + chokes → five USB-A 3.0 ports. - Ethernet: RJ45 + magnetics + PHY; SFP cage + PHY/SFP interface. - Wireless: ESP32 module pad + SX1276 + antenna matching; program pads. 6. **Video & Audio** - HDMI RX (TDA19978) & TX (TFP410) blocks with TMDS ESD & termination. - Audio codec + 3.5 mm jack; route differential audio lines; add ESD. 7. **Display & Indicators** - SSD1306 OLED on I²C; add pull-ups & backlight power if needed. - LEDs for power, charge, status. 8. **PCB Layout & Mechanical** - Follow Raspberry Pi 2×20 header footprint & UNO shield hole pattern. - Add reinforcement for rugged use; standoffs at corners. - Define 4-layer stackup: • Top: signal • L2: GND • L3: PWR • Bottom: signal 9. **DRC/ERC Reviews** - Run ERC for decoupling, pull-ups, power nets. - Run DRC for high-speed clearance, differential pairs, via aspect ratios. 10. **Fabrication & Testing** - Export Gerbers, IPC-2581, BOM. - Prototype assembly; verify power sequencing, rails, interfaces. - Functional tests: USB-C PD negotiation, NVMe throughput, eGPU over TB3, wireless comm, audio, OLED. --- This spec sheet and part list should guide your Flux schematic and PCB layout workflow through to fabrication and validation. Let me know if you’d like to deep-dive into any specific block or review datasheet details next!... show more1 Star
Arduino Uno R3 Shield Template hvke
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more1 Star
Arduino Nano Shield Template 9f6G
Template for Arduino Nano Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Nano itself along with the board outline on the silkscreen. #Arduino #Nano #Shield #template #project #project-template... show more1 Star
Arduino Nano Shield Template
Template for Arduino Nano Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Nano itself along with the board outline on the silkscreen. #Arduino #Nano #Shield #template #project #project-template... show more1 Star
Arduino Uno R3 Shield Max485 single
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more1 Star
Arduino Uno R3 Shield Template
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more1 Star
Arduino
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more1 Star
Arduino Uno R3 Shield Template 4Liy
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more1 Star
UNO - NRF shield
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more1 Star
Arduino Uno R3 Shield Template qfGq
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more1 Star
Arduino Uno R3 Shield Template
Template for Arduino Uno R3 Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Uno R3 itself along with the board outline on the silkscreen. #Arduino #Uno #Shield #Template #project-template #project... show more1 Star
Arduino Nano Shield Template
Template for Arduino Nano Shield. Include an official pinout so you will always know Arduino names, the alternative roles of pins, which one is SDA, or SCL, etc. On PCB you can find the 3D model of the Arduino Nano itself along with the board outline on the silkscreen. #Arduino #Nano #Shield #template #project #project-template... show more1 Star
NPN-TRANS-001
The Ariel AI chip prototype is an advanced electronic component designed to enhance the capabilities of Flux AI systems through a sophisticated arrangement of transistors, resistors, capacitors, and a cutting-edge CPU. Key components include two NPN transistors (part numbers NPN-TRANS-001 and NPN-TRANS-002), which are essential for signal amplification, alongside precision resistors (RES-1K and RES-1K-002) each with a resistance of 1kΩ, and a capacitor (CAP-10UF) with a capacitance of 10μF, crucial for filtering and stabilizing the voltage supply. At the heart of the design is a revolutionary CPU (part number CPU-RT-4C-2G) featuring a quad-core setup with a clock speed of 2GHz, based on a radical transistor architecture, designed to deliver unparalleled computational performance for AI tasks. This component set is powered by a 5V DC power supply (DCPS-5V), ensuring a stable and efficient operation. The Ariel AI chip is engineered for high-speed, reliable performance in demanding AI applications, representing a significant advancement in electronic component design for artificial intelligence systems.... show more1 Star
2N7002DW-3T6R 34a7
The 2N7002DW from iSion is a high-speed N-channel enhancement mode field-effect transistor (FET) designed for pulse amplifier and drive applications. Manufactured using the N-Channel DMOS process, this component offers robust performance with a maximum drain-source voltage (VDSS) of 60V and a gate-source voltage (VGSS) of +20V. It features a continuous drain current (ID) of 300mA and a pulsed drain current (IDM) of 800mA, making it suitable for demanding switching tasks. The 2N7002DW is compliant with ESD MIL-STD 833, providing +2.5KV contact discharge protection. Available in a compact SOT-363 package, the device also adheres to full RoHS standards, ensuring environmentally friendly compliance. Key electrical characteristics include a gate threshold voltage (VGS(th)) range of 1.0V to 2.5V, a static drain-source on-resistance (RDS(ON)) of up to 3.0Ω at VGS of 10V, and dynamic switching times with a turn-on delay (td(on)) of 6ns and a turn-off delay (td(off)) of 25ns. This transistor is ideal for engineers seeking reliable performance in high-speed pulse applications.... show more1 Star