• GPS Breakout - ZOE-M8Q (Qwiic)

    GPS Breakout - ZOE-M8Q (Qwiic)

    The SparkFun ZOE-M8Q GPS Breakout is a high accuracy, miniaturized, GPS board that is perfect for applications that don't possess a lot of space. The on-board ZOE-M8Q is a 72-channel GNSS receiver, meaning it can receive signals from the GPS, GLONASS, BeiDou, and Galileo constellations. This increases precision and decreases lock time and thanks to the onboard rechargable battery you'll have backup power enabling the GPS to get a hot lock within seconds! Additionally, this u-blox receiver supports I2C (u-blox calls this Display Data Channel) which made it perfect for the Qwiic compatibility so we don't have to use up our precious UART ports. Utilizing our handy Qwiic system, no soldering is required to connect it to the rest of your system. However, we still have broken out 0.1"-spaced pins in case you prefer to use a breadboard.

    adrian95

    1 Comment

    2 Stars


  • AvocAudio 04_02 Generating Manufacturing Files

    AvocAudio 04_02 Generating Manufacturing Files

    AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar

    2 Stars


  • AvocAudio - Fully Placed 23ab 7515

    AvocAudio - Fully Placed 23ab 7515

    AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar

    playground

    &

    collinsemasi

    2 Stars


  • Aaduino

    Aaduino

    The AAduino is an wireless Arduino clone the size of an AA battery with Keystone battery terminals rotated 180° to act as positive and negative terminals. It is meant to go inside a 3xAA battery holder creating a very small wireless node. Powered by an ATMega328p, it is fitted with an RFM69CW companion, two DS18B20 temperature sensors and an indicator LED

    adrian95

    &

    jharwinbarrozo
    jecstronic

    2 Stars


  • MSP430FR6035IPZ

    MSP430FR6035IPZ

    The Texas Instruments MSP430FR604x and MSP430FR603x family comprises highly integrated ultrasonic sensing and measurement system-on-chips (SoCs) designed specifically for water and heat metering applications. The featured components, including MSP430FR6047, MSP430FR60471, MSP430FR6045, MSP430FR6037, MSP430FR60371, and MSP430FR6035, deliver best-in-class ultrasonic water flow measurement with ultra-low power consumption. These microcontrollers excel with an active mode current consumption of approximately 120 µA/MHz and a standby mode power draw as low as 450 nA with a real-time clock (RTC) enabled. Key functionalities include a high-precision differential time-of-flight (dTOF) accuracy of less than 25 ps, integrated analog front-end, programmable pulse generation (PPG), and an analog comparator. They also interface directly with standard ultrasonic sensors up to 2.5 MHz and feature up to 256KB FRAM, robust RAM options, and integrated LCD drivers for up to 264 segments. The embedded low-energy accelerator (LEA) enhances digital signal processing capabilities, making these components ideal for battery-powered metering solutions. Peripherals include multiple enhanced serial communication interfaces, high-performance ADCs, DMA controllers, and a suite of timers and encryption modules. These features combine to offer a powerful solution for high-accuracy, low-cost, and ultra-low-power metering applications.

    jbreidfjord-dev

    4 Comments

    2 Stars


  • Lipo Battery

    Lipo Battery

    3.7 V Lithium-Ion Polymer Battery Rechargeable (Secondary) 5500mAh

    caucajun20

    1 Comment

    1 Star


  • Multi cells battery

    Multi cells battery

    jharwinbarrozo

    1 Comment

    1 Star


  • Drone

    Drone

    This PCB is for a quad copter drone. The drone will use a 4S lipo battery as a power supply and each of the motors will use 30Amp ESC's. The microcontroller that handles the RF signals is a Raspberry Pi Pico.

    rafaelzasas

    211 Comments

    1 Star


  • Lethal Company Pro Flashlight Power Board V1

    Lethal Company Pro Flashlight Power Board V1

    Lethal Company Pro Flashlight Broken Features: - U2M cannot be line powered from this circuit so the LED driver does not regulate. [Find the acompanying button board here](https://www.flux.ai/markwuflux/lethal-company-pro-flashlight-button-board) -Ultra bright -Makes click noise from speaker -Wirelessly transmits battery life (maybe use Ubo to receive this) -Drive a SST-40 Chinese LED I want this thing to be super bright! The brighter the better, but keep it simple. These LEDs will draw a lot of power, so we need some sort of CC source. It doesn't have to have high bandwidth. I am thinking about a DIY microcontroller buck converter with PID duty cycle control. Mistakes in this V1 design: - No pullup resistor on PG of Module1

    markwuflux

    92 Comments

    1 Star


  • Solar power eartag for WM1110

    Solar power eartag for WM1110

    To power the wm1110 from a hybrid lithium ion capacitor, an efficient ultra-low power boost converter with battery management is used to generate power BQ25504RGTT

    tteague

    70 Comments

    1 Star


  • CI Playground: BRAVE POWER MANAGEMENT BOARD

    CI Playground: BRAVE POWER MANAGEMENT BOARD

    Brave is a versatile and efficient power board that can provide 12v, 5v and 3.3v outputs for various applications. It can be powered by battery or solar panel, and the battery can be recharged by solar energy. It can also be powered by a USB port if needed. This board is ideal for IoT projects that require reliable and stable power supply in different environments. #IoT #power #management #usb

    playground

    &

    collinsemasi

    65 Comments

    1 Star


  • Thermostat Cost Optimization

    Thermostat Cost Optimization

    Smart Thermostat design using an ESP32 module for WiFi connectivity and a BME680 sensor for environmental monitoring. The user interface includes an E-ink display and an encoder for settings adjustment. Power: USB and Battery Movement sensor

    nico

    52 Comments

    1 Star


  • pundit.ai

    pundit.ai

    1. Overview: The Pundit pendant is a wearable AI transcription assistant. An innovative device designed to seamlessly integrate into daily activities, providing real-time transcription and note-taking capabilities. Combining advanced AI algorithms with state-of-the-art hardware components, the device offers crystal clear audio recording, durable construction, and convenient features such as cloud synchronization, weatherproofing, and a vibrant display for animations and expressions. 2. Hardware Specifications: * Rechargeable Battery: Lithium-ion battery providing up to 150 hours of continuous operation. * Construction: Durable aluminum body ensuring longevity and protection against wear and tear. * Audio Quality: High-fidelity microphone array for clear and accurate transcription, with noise cancellation technology. * Weatherproofing: Sealed construction to withstand various weather conditions, making it suitable for outdoor use. * Versatile Mounting: Equipped with a magnetic clasp for easy attachment to clothing or accessories. * Connectivity: Wi-Fi and Bluetooth connectivity for seamless data transfer and integration with other devices. * Charging: USB-C port for fast and convenient charging, with support for various power sources. * Input Microphone Array: Multiple microphones strategically placed for optimal audio capture and transcription accuracy. * Display: Colorful screen for displaying animations, expressions, and status indicators, enhancing user interaction and personalization. 3. Software Features: * Real-time Transcription: Utilizes AI algorithms for instant transcription of spoken words into text, with high accuracy. * Note-taking: Automatically creates and organizes notes based on conversations, timestamps, and contextual cues. * Audio Recording: One-touch button for initiating audio recording, with options for manual or automatic saving. * Cloud Synchronization: Syncs transcription data to the cloud for easy access and retrieval from any device. * Speech Recognition: Advanced speech recognition technology for identifying speakers and distinguishing between multiple voices. * Language Support: Multilingual support for transcription and note-taking in various languages. * Customization: User-configurable settings for adjusting transcription preferences, language models, and display animations. * Security: Encryption and authentication protocols to ensure the privacy and security of transcription data. 4. Dimensions and Weight: * Dimensions: Compact and lightweight design for comfortable wearability. * Weight: Minimal weight to prevent discomfort during prolonged use. 5. Compatibility: * Operating Systems: Compatible with iOS, Android, and other major operating systems. * Applications: Integration with popular productivity and communication apps for seamless workflow management. 6. Warranty and Support: * Warranty: Manufacturer's warranty covering defects in materials and workmanship. * Support: Dedicated customer support for technical assistance, troubleshooting, and software updates. 7. Target Market: * Professionals: Ideal for professionals in various industries, including journalists, researchers, students, and business professionals. * Outdoor Enthusiasts: Suitable for outdoor activities such as hiking, camping, and fieldwork where reliable transcription and note-taking are essential. * Everyday Users: Provides convenience and efficiency for everyday tasks, such as meetings, lectures, and personal reminders. 8. Conclusion: The Wearable AI Transcription Assistant sets a new standard for wearable technology, offering unmatched transcription and note-taking capabilities in a compact and durable package. With its advanced features, seamless connectivity, vibrant display, and user-friendly design, it is poised to revolutionize how we capture and manage information in our daily lives while adding a touch of personality and fun with customizable animations and expressions.

    collinsemasi

    26 Comments

    1 Star


  • BLE remote control Reference Design

    BLE remote control Reference Design

    This is a BLE remote control Reference Design. It features a Microchip RN4871U BLE module for communication, various push buttons (Up, Down, Left, Right, OK) for control input, and a piezoelectric buzzer for audio feedback. Power is supplied by a battery and it is regulated to 3.3V for the BLE module. #BLE #IoT #referenceDesign #simple-embedded #microchip #template #reference-design

    vasyl

    21 Comments

    1 Star


  • BLE remote control Reference Design

    BLE remote control Reference Design

    This is a BLE remote control Reference Design. It features a Microchip RN4871U BLE module for communication, various push buttons (Up, Down, Left, Right, OK) for control input, and a piezoelectric buzzer for audio feedback. Power is supplied by a battery and it is regulated to 3.3V for the BLE module. #BLE #IoT #referenceDesign #simple-embedded #microchip #template #reference-design

    juanpablop1441

    18 Comments

    1 Star


  • WiFi Door and Window Sensor

    WiFi Door and Window Sensor

    This project is a WiFi-enabled door and window sensor using the ESP8684-WROOM-02C module from Espressif Systems. It includes a triple-color LED indicator, Reed switch for detection, a 3.3V Regulatory mechanism, and USB C for firmware flashing. It's powered by a regular non-rechargeable AAA battery. #WiFi #MCU #ReferenceDesign #project #ESP8684 #referenceDesign #simple-embedded #espressif

    vasy_skral

    17 Comments

    1 Star


  • Ultrasonic Distance Meter Reference Design

    Ultrasonic Distance Meter Reference Design

    This circuit is an ultrasonic distance meter based on an ATTiny2313 microcontroller. It uses an HC-SR04 ultrasonic sensor to measure distance and displays the results on an OLED display. The power supply is constructed using a Boost converter (TPS613222A) and a 2-cell AA battery. Additionally, it also includes ISP for programming, RESET and START switches, and LED indicators. #project #Template #projectTemplate #ultrasonic #OLED #arduino #attiny2313 #TPS613222A #ISP #referenceDesign #simple-embedded #microchip #template #reference-design

    vasy_skral

    13 Comments

    1 Star


  • On Air R2 - Thread Enabled

    On Air R2 - Thread Enabled

    R2 w Thread changes: -Moving to Letter Modules for ease of design -Adding MGM210L for Matter on Thread On/Off and intensity control -Shifted A and R letters closer to fix Kerning -Optional: Add unpopulated AA Battery Holder for battery option R1 changes: -Changed LED part to Red LEDs -adjusted resistor value of buck converter -Changed source for USB-C Connector -Removed exposed soldermask on buck converter with negative soldermask expansion -Order with black soldermask Modified by markwu2001: - Adjustable Brightness, - 85-90% Drive Efficiency - <5W Operation (Can use 5V 1A Plug) This project can be purchased from LCSC Original Description: Daddy's second circuit board. A sign to let my wife know when I'm on a call. Activates with a slide switch and is powered by USB-C. #template #arduino-matter

    markwuflux

    11 Comments

    1 Star


  • Code Interpreter Playground: AvocAudio: A tinyML community board

    Code Interpreter Playground: AvocAudio: A tinyML community board

    AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #raspberryPi #rp2040 #lorawan #iot #solar

    playground

    &

    collinsemasi

    10 Comments

    1 Star


  • nRF52810 Watch Template

    nRF52810 Watch Template

    This is a smart watch project based on E73-2G4M04S1A module with SoC nRF52810 on board. OLED display and coin battery #wearable #nRF52810 #E73 #Ebyte #BLE #referenceDesign

    grahulnath

    9 Comments

    1 Star


  • Block Diagram Review Demo

    Block Diagram Review Demo

    The "Green Dot 2040E5" Board is a Node that interfaces RS485 Sensor probes and can log information to the cloud using LoRa Connectivity. It uses the XIAO RP2040 and the LoRa-E5 (STM32WLE5JC) modules from Seeed Studio to do its magic. It also has amazing power management capabilities (Solar charging, Battery protection, etc) that make it very useful for IoT applications #SeeedStudio #XIAO #LoRa #RP2040 #IoT

    kerry

    9 Comments

    1 Star


  • LoST Board

    LoST Board

    The "LoST" Board is a Node that interfaces Industrial Sensor probes and can log information to the cloud using LoRa Connectivity. It uses the XIAO RP2040 and the LoRa-E5 (STM32WLE5JC) modules from Seeed Studio to do its magic. It also has amazing power management capabilities (Solar charging, Battery protection, etc) that make it very useful for IoT applications #Seeed #XIOA #LoRa #RP2040 #IoT

    collinsemasi

    9 Comments

    1 Star


  • UPS for various dc voltages

    UPS for various dc voltages

    UPS that charges a 12V battery from a 220v supply. The ups supplies various DC voltages to different components.

    ianbritt

    8 Comments

    1 Star


  • Speedy AI Pendent

    Speedy AI Pendent

    Product Type: Wearable AI pendant Primary Function: Records audio, generates transcripts, and organizes information about daily interactions User Interaction: Input: Activation button Output: RGB LED ring, Bluetooth link to phone Key Features: Audio Recording: Activated by button press Transcription: Converts audio to text Sentiment Analysis: Embedded AI evaluates sentiment Information Management: Filters essential information and action items Technical Specifications Form Factor: Wearable pendant Display: RGB LED ring around the edge Sensors: 2 Microphones 1 Button Connectivity: Bluetooth for phone linkage Wi-Fi USB-C for charging Wireless Protocol: Wi-Fi, Bluetooth Battery Type: LiPo 2000 mAh Battery Life: 6 hours of continuous use Charging Method: USB-C Operating Voltage: 3.3V Operating Conditions: Temperature Range: -10°C to 70°C Humidity: 10 to 90% Software: Python for AI and processing Compliance: RoHS, FCC, CE Reliability: 20,000 hrs Life Cycle Expectancy: 10 years AI Capabilities Speech to Text Recognition: Converts audio input to written text Embedded AI Sentiment Analysis: Evaluates the mood or sentiment expressed in the text Essential Information Filtering: Identifies and segregates crucial data and actionable items Power Consumption and Efficiency Power consumption must align with battery capacity to ensure 6 hours of continuous operational use.

    ryanf

    5 Comments

    1 Star


  • Raspberry Pi Pico Combat Robot PCB

    Raspberry Pi Pico Combat Robot PCB

    A Raspberry Pi Pico based combat robot platform using a LiPo battery, motor driver, DC motors, and ESCs.

    techguru

    4 Comments

    1 Star


  • TEMP Monitoring

    TEMP Monitoring

    2Cell Battery Charger & A9G Module

    adrian95

    4 Comments

    1 Star


  • [REV 2] BRAVE POWER MANAGEMENT BOARD

    [REV 2] BRAVE POWER MANAGEMENT BOARD

    Brave V2 is a versatile and efficient power board that can provide 12v, 5v and 3.3v outputs for various applications. It can be powered by battery or solar panel (now revised to accepts input voltage of upto 30V), and the battery can be recharged by solar energy. It can also be powered by a USB port if needed. This board is ideal for IoT projects that require reliable and stable power supply in different environments. #IoT #power #management #usb

    collinsemasi

    3 Comments

    1 Star


  • AvocAudio: A tinyML community board v2 Modules

    AvocAudio: A tinyML community board v2 Modules

    AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #raspberryPi #rp2040 #lorawan #iot #solar

    collinsemasi

    2 Comments

    1 Star


  • Particle Argon Template

    Particle Argon Template

    The Argon is a powerful Wi-Fi enabled development board for Wi-Fi networks. It is based on the Nordic nRF52840 and has built-in battery charging circuitry so it’s easy to connect a Li-Po and deploy your local network in minutes. #Particle #Argon #Template #Iot #Project-template

    gdfgddaasda

    &

    malicius123

    1 Comment

    1 Star


  • AvocAudio - Fully Placed d889 ec31

    AvocAudio - Fully Placed d889 ec31

    AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar

    playground

    &

    collinsemasi

    1 Comment

    1 Star


  • Flora Mainboard

    Flora Mainboard

    FLORA has a small but easy to use onboard reset button to reboot the system. The power supply is designed to be flexible and easy to use. There is an onboard polarized 2 JST battery connector with protection schottky diode for use with external battery packs from 3.5v to 16v DC in. Can be used with LiIon/LiPoly, LiFe, alkaline or rechargeable NiMh/NiCad batteries of any size. The FLORA does not have a LiPo charger included by design, this allows safe use with multiple battery types and reduces risk of fire as it is not recommended to charge these batteries on fabric.

    jecstronic

    1 Comment

    1 Star


  • TP4056_Module

    TP4056_Module

    The TP4056 1A Li-ion Lithium Battery Charging Module with Current Protection – Mini USB is a compact device designed to charge individual lithium ion (Li-Ion) cells that lack their own protective circuit, such as 16550s, with a single cell capacity of 3.7V and 1 Ah or higher. This battery charging module employs the TP4056 charger IC and DW01 battery protection IC to provide a charge current of 1A, which will cease upon completion of the charging process. https://robocraze.com/products/tp4056-lithium-battery-charging-board #PCB #TP4056 #battery

    ihscielle

    1 Comment

    1 Star


  • [QA] Real Professional Project

    [QA] Real Professional Project

    Arduino Uno shield used to monitor chimney smoke and provide feedback to stove. This shield powers the Arduino using TEGs and a battery. This shield provides power to an LED, fans, and a light sensor used to detect light intensity.

    chaykak2

    &

    chrisberry

    1 Comment

    1 Star


  • MAX1551 Reference Design

    MAX1551 Reference Design

    This project is a battery charging circuit utilizing a MAX1551 chip. It features a USB and DC power input, with LED status indicators. The design is outfitted with necessary decoupling capacitors and resistors to ensure smooth operation. #project #Template #charger #referenceDesign #batterycharger #MAX1551 #template #bms #analog

    thirdy

    1 Comment

    1 Star


  • BQ25570_Harvester

    BQ25570_Harvester

    TI BQ25570 step-up DC-DC energy harvester and battery charger

    vasy_skral

    1 Comment

    1 Star


  • Adafruit-PowerBoost-500-Charger-Sublayout iSzX

    Adafruit-PowerBoost-500-Charger-Sublayout iSzX

    PowerBoost 500C is the perfect power supply for your portable project! With a built-in battery charger circuit, you'll be able to keep your project running even while recharging the battery! This little DC/DC boost converter module can be powered by any 3.7V LiIon/LiPoly battery, and convert the battery output to 5.2V DC for running your 5V projects.

    jatin-test

    1 Comment

    1 Star


  • Seeed Studio XIAO ESP32S3 Sense a323

    Seeed Studio XIAO ESP32S3 Sense a323

    Seeed Studio XIAO ESP32S3 leverages dual-core ESP32S3 chip, supporting both Wi-Fi and BLE wireless connectivities, which allows battery charge. It integrates built-in camera sensor, digital microphone. It offers 8MB PSRAM, 8MB FLASH, and external SD card slot. All of these make it suitable for embedded ML, like intelligent voice and vision AI. #SeeedStudio #xiao

    whisper1606

    1 Comment

    1 Star


  • CheckIt_mini

    CheckIt_mini

    CheckIt is a daily habit tool. When you complete a habit, flip a switch, then an LED lights up. Future work will include wiring the 24pin FPC port to the Pico which causes an e-paper screen to display a message when a switch is flipped. This PCB runs using a Raspberry Pi Pico and has plans to be battery powered similar to a digital alarm clock.

    ryanleontini

    1 Comment

    1 Star


  • yamaha accu dongle

    yamaha accu dongle

    Battery Dongle for allowing any suitable Battery to be attached to Yamaha ebike motors.

    jecstronic

    &

    jharwinbarrozo

    1 Comment

    1 Star


  • LoRa Door and Window Sensor Reference Design bbYa

    LoRa Door and Window Sensor Reference Design bbYa

    This is a LoRa-based door and window sensor incorporating a microcontroller unit (MCU). It features a reed sensor, LED indicators, a AAA non-rechargeable battery, and a booster IC for constant voltage. The MCU is linked to peripherals through nets, ensuring optimal performance #LoRa #MCU #ReferenceDesign #project #referenceDesign #simple-embedded #seeed #seeed-studio #template #reference-design

    yeisondurango

    1 Comment

    1 Star


  • B2Bordjie_2_1_0_R2LNGB_24I

    B2Bordjie_2_1_0_R2LNGB_24I

    B2Bordjie 2.1.0 R2LNGB-24I Raspberry Pico 2 Lora NFC GPS Battery 24V Input

    ryanf

    1 Star


  • RT9525 ESP32 Wireless BMS

    RT9525 ESP32 Wireless BMS

    This is ESP32-S3-MINI-1 Wireless BMS project for a battery charger based on the RT9525 battery charger IC from Richtek. #project #ESP32 #ESP32S3 #charger #batterycharger #template #bms #monitor #RT9525 #richtek #polygon

    vasy_skral

    1 Star


  • Brainstorm a new project with AI [Example]

    Brainstorm a new project with AI [Example]

    make this for me now # Device Summary & Specification Sheet ## 1. Overview A rugged, Arduino-Uno-and-Raspberry-Pi-style single-board micro-PC featuring: - Smartphone-class CPU (Snapdragon 990) - USB-C Power Delivery + 4×AA alkaline backup + ambient-light harvester - On-board Arduino-Uno-compatible ATmega328P - External NVMe SSD via USB3 bridge & optional Thunderbolt 3 eGPU support - 5× USB 3.0 ports, HDMI in/out, Gigabit Ethernet & SFP fiber, Wi-Fi, Bluetooth, LoRa - 0.96″ OLED status display, 3.5 mm audio jack with codec --- ## 2. Key Specifications | Category | Specification | |--------------------|-------------------------------------------------------------------------------| | CPU | Snapdragon 990, octa-core up to 2.84 GHz | | Memory | 6 GB LPDDR4x DRAM | | Storage Interface | PCIe Gen3 ×4 → M.2 NVMe + USB 3.1 Gen1 bridge | | MCU | ATmega328P (Arduino-Uno-compatible) | | Power Input | USB-C PD up to 20 V/5 A; 4×AA alkaline backup; ambient-light photodiode boost | | Power Rails | 12 V, 5 V, 3.3 V, 1.8 V, 1.2 V via buck/buck-boost regulators | | USB Hub | 5× USB 3.0 downstream ports | | Display | 0.96″ 128×64 OLED via I²C/SPI | | Networking | 1 × Gigabit RJ45; 1 × SFP fiber; Wi-Fi 802.11ac + Bluetooth; LoRa SX1276 | | Video I/O | HDMI 2.0 input (RX) & output (TX) | | Audio | 3.5 mm jack + TLV320AIC3101 codec; Bluetooth audio | | Form Factor | Raspberry Pi–style header + Arduino-Uno shield headers; 4× standoff mounts | --- ## 3. Complete Parts List | Part | Function | Qty | |------------------------------------------------------------------------------------------------|-----------------------------------------------|-----| | [Snapdragon 990](https://www.flux.ai/search?type=components&q=Snapdragon%20990) | Main application CPU | 1 | | [LPDDR4x DRAM](https://www.flux.ai/search?type=components&q=LPDDR4x%20DRAM) | System memory | 1 | | [eMMC 64GB](https://www.flux.ai/search?type=components&q=eMMC%2064GB) | On-board storage | 1 | | [M.2 NVMe Connector](https://www.flux.ai/search?type=components&q=M.2%20NVMe%20Connector) | External SSD interface | 1 | | [JMS583](https://www.flux.ai/search?type=components&q=JMS583) | PCIe→USB 3.1 bridge for NVMe | 1 | | [Titan Ridge](https://www.flux.ai/search?type=components&q=Titan%20Ridge) | Thunderbolt 3/eGPU controller | 1 | | [STUSB4500](https://www.flux.ai/search?type=components&q=STUSB4500) | USB-C Power-Delivery controller | 1 | | [LTC4412](https://www.flux.ai/search?type=components&q=LTC4412) | Ideal-diode OR-ing | 1 | | [LTC3108](https://www.flux.ai/search?type=components&q=LTC3108) | Ambient-light (solar) energy harvester | 1 | | [Battery Holder 4×AA](https://www.flux.ai/search?type=components&q=Battery%20Holder%204xAA) | Alkaline backup power | 1 | | [TPS53318](https://www.flux.ai/search?type=components&q=TPS53318) | 6 V→5 V synchronous buck regulator | 1 | | [MCP1700-3302E/TO](https://www.flux.ai/search?type=components&q=MCP1700-3302E/TO) | 6 V→3.3 V LDO | 1 | | [TPS63060](https://www.flux.ai/search?type=components&q=TPS63060) | Buck-boost for 12 V rail (eGPU power) | 1 | | [ATmega328P](https://www.flux.ai/search?type=components&q=ATmega328P) | Arduino-Uno microcontroller | 1 | | [ESP32-WROOM-32](https://www.flux.ai/search?type=components&q=ESP32-WROOM-32) | Wi-Fi + Bluetooth co-processor | 1 | | [SX1276](https://www.flux.ai/search?type=components&q=SX1276) | LoRa transceiver | 1 | | [TUSB8041](https://www.flux.ai/search?type=components&q=TUSB8041) | 5-port USB 3.0 hub IC | 1 | | [Ethernet PHY](https://www.flux.ai/search?type=components&q=Ethernet%20PHY) | Gigabit Ethernet physical transceiver | 1 | | [SFP Cage](https://www.flux.ai/search?type=components&q=SFP%20Cage) | Fiber-optic SFP module connector | 1 | | [TDA19978](https://www.flux.ai/search?type=components&q=TDA19978) | HDMI 2.0 receiver (input) | 1 | | [TFP410](https://www.flux.ai/search?type=components&q=TFP410) | HDMI 2.0 transmitter (output) | 1 | | [TLV320AIC3101](https://www.flux.ai/search?type=components&q=TLV320AIC3101) | Audio codec for 3.5 mm jack & Bluetooth audio | 1 | | [Audio Jack 3.5mm](https://www.flux.ai/search?type=components&q=Audio%20Jack%203.5mm) | Headphone/mic port | 1 | | [SSD1306 OLED](https://www.flux.ai/search?type=components&q=SSD1306%20OLED) | Status display | 1 | --- ## 4. High-Level Design & Implementation Steps 1. **Schematic Creation** - Section off blocks: CPU + memory, power-supply, NVMe/USB bridge, MCU, wireless, USB hub, video, audio, I/O headers. - Place all parts from the list and wire per respective datasheet reference circuits. 2. **Power System** - Implement USB-C PD with STUSB4500 → buck/buck-boost & LDO rails. - Add LTC4412 to OR-ing battery pack into 6 V bus. - Include LTC3108 harvest input to 6 V bus (no recharge to AA). - Add decoupling & bulk caps per regulator datasheets; PTC fuses & ESD diodes on inputs. 3. **SoC & High-Speed Interfaces** - Break out Snapdragon 990 BGA with DDR4 routing (point-to-point). - Route PCIe Gen3 lanes to M.2 slot via JMS583 and to Titan Ridge for TB/eGPU. - Follow high-speed layout guidelines: impedance, length matching, EMI filters. 4. **MCU & Expansion Headers** - Place ATmega328P with UNO-style 2.54 mm headers; add ISP 6-pin, I²C pull-ups, reset circuit. 5. **Connectivity Blocks** - USB hub: TUSB8041 + ESD + chokes → five USB-A 3.0 ports. - Ethernet: RJ45 + magnetics + PHY; SFP cage + PHY/SFP interface. - Wireless: ESP32 module pad + SX1276 + antenna matching; program pads. 6. **Video & Audio** - HDMI RX (TDA19978) & TX (TFP410) blocks with TMDS ESD & termination. - Audio codec + 3.5 mm jack; route differential audio lines; add ESD. 7. **Display & Indicators** - SSD1306 OLED on I²C; add pull-ups & backlight power if needed. - LEDs for power, charge, status. 8. **PCB Layout & Mechanical** - Follow Raspberry Pi 2×20 header footprint & UNO shield hole pattern. - Add reinforcement for rugged use; standoffs at corners. - Define 4-layer stackup: • Top: signal • L2: GND • L3: PWR • Bottom: signal 9. **DRC/ERC Reviews** - Run ERC for decoupling, pull-ups, power nets. - Run DRC for high-speed clearance, differential pairs, via aspect ratios. 10. **Fabrication & Testing** - Export Gerbers, IPC-2581, BOM. - Prototype assembly; verify power sequencing, rails, interfaces. - Functional tests: USB-C PD negotiation, NVMe throughput, eGPU over TB3, wireless comm, audio, OLED. --- This spec sheet and part list should guide your Flux schematic and PCB layout workflow through to fabrication and validation. Let me know if you’d like to deep-dive into any specific block or review datasheet details next!

    risk4444

    &

    melinda_scarlet285093
    izzeddinizzeddin
    dobei

    1 Star


  • Ultrasonic Distance Meter Reference Design

    Ultrasonic Distance Meter Reference Design

    This circuit is an ultrasonic distance meter based on an ATTiny2313 microcontroller. It uses an HC-SR04 ultrasonic sensor to measure distance and displays the results on an OLED display. The power supply is constructed using a Boost converter (TPS613222A) and a 2-cell AA battery. Additionally, it also includes ISP for programming, RESET and START switches, and LED indicators. #project #Template #projectTemplate #ultrasonic #OLED #arduino #attiny2313 #TPS613222A #ISP #referenceDesign #simple-embedded #microchip #template #reference-design

    andresroa

    1 Star


  • Boost converter for 3.3 volt

    Boost converter for 3.3 volt

    A Buck converter that can be power by Li-ion Battery and output 3.3 volt and 500mA Power by the TPS63051YFFR and the same package as a In the same as a Package as a standard dafruit buck converter. input Voltage Range : 3.3 v to 5.5 v

    corneliujonathan

    1 Star


  • 5_15 PCB Routing - AutoLayout - Autoroute the GPIOs

    5_15 PCB Routing - AutoLayout - Autoroute the GPIOs

    AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar

    hasofukirsch

    1 Star


  • 5_12 PCB Routing - Fanouts

    5_12 PCB Routing - Fanouts

    AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar

    hasofukirsch

    1 Star


  • 5_11 PCB Placement Updates

    5_11 PCB Placement Updates

    AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar

    hasofukirsch

    1 Star


  • AvocAudio: A tinyML community board v3 Rev 1

    AvocAudio: A tinyML community board v3 Rev 1

    AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #raspberryPi #rp2040 #lorawan #iot #solar

    collinsemasi

    1 Star


  • 5_01 PCB - Placement

    5_01 PCB - Placement

    AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar

    hasofu

    &

    hasofukirsch

    1 Star