PCB Design Review Request

1:48

General
Chat History
Project
Knowledge Base
IC1

Preparing code response.

Drafting ESP32-C6 code.

Creating a code outline.

Structuring the Debouncer.

Preparing for firmware coding.

Using Knowledge Base Tool.

Handling linking and code mentions.

Here’s a ready-to-adapt ESP-IDF template for an 8-gang smart switch on an ESP32-C6. It debounces eight rocker-switch inputs (through your isolation/sense stage) and drives eight relay outputs. Each channel supports:
  • Manual toggle on input edge
  • Optional 1-second on/off pattern for endurance testing
  • Safe default state on boot
Notes:
  • Replace PIN placeholders with your real GPIOs. Avoid bootstrapped pins on ESP32-family devices when possible.
  • If your input is active-low (typical opto to GND), set active_low = true for that channel.
  • All relays default OFF at boot.
main.c (ESP-IDF)
/* 8-Gang ESP32-C6 Smart Switch - 8x debounced inputs (rocker -> isolated sensing) - 8x relay outputs - Optional 1 s pattern mode per channel - ESP-IDF (v5+) FreeRTOS
TODO: Replace GPIO_NUM_X placeholders with valid pins on your ESP32-C6 module.
*/
#include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/timers.h" #include "driver/gpio.h" #include "esp_log.h"
#define TAG "SW8"
// ========================= User Configuration =========================
// Relay pins (active-high assumed; set invert_relay[i] = true if your driver is active-low) static const gpio_num_t relay_pins[8] = { GPIO_NUM_2, GPIO_NUM_3, GPIO_NUM_4, GPIO_NUM_5, GPIO_NUM_6, GPIO_NUM_7, GPIO_NUM_8, GPIO_NUM_9 };
// Input pins from 230 Vac sensing (through isolation/conditioner) // If your conditioning outputs pull the line low when active, set active_low_inputs[i] = true. static const gpio_num_t input_pins[8] = { GPIO_NUM_10, GPIO_NUM_11, GPIO_NUM_12, GPIO_NUM_13, GPIO_NUM_14, GPIO_NUM_15, GPIO_NUM_16, GPIO_NUM_17 };
// Per-channel polarity static const bool active_low_inputs[8] = { true, true, true, true, true, true, true, true }; static const bool invert_relay[8] = { false, false, false, false, false, false, false, false };
// Debounce/sample settings #define DEBOUNCE_INTERVAL_MS 5 #define DEBOUNCE_STABLE_COUNT 5 // 5*5ms = 25 ms stable
// Pattern mode settings #define PATTERN_TOGGLE_PERIOD_MS 1000
// Optional internal pull-ups for inputs (enable if your interface is open-collector to GND) #define ENABLE_INTERNAL_PULLUPS true
// ========================= Internal State =========================
typedef struct { bool debounced; // current debounced logical state bool last_debounced; // previous debounced state uint8_t stable_count; // counts stable samples } debounce_t;
typedef struct { bool relay_on; // logical ON/OFF bool pattern_enable; // 1-second on/off pattern uint32_t pattern_elapsed_ms; } channel_t;
static debounce_t in_db[8]; static channel_t ch[8];
static TimerHandle_t scan_timer; // 5 ms input sampling static TimerHandle_t pattern_timer; // 100 ms pattern accumulator
// ========================= GPIO Helpers =========================
static inline void relay_apply(uint8_t i) { bool drive = ch[i].relay_on ^ invert_relay[i]; gpio_set_level(relay_pins[i], drive ? 1 : 0); }
static inline bool read_input_raw(uint8_t i) { int raw = gpio_get_level(input_pins[i]); return active_low_inputs[i] ? (raw == 0) : (raw == 1); }
// ========================= Control Logic =========================
static void set_relay(uint8_t i, bool on) { ch[i].relay_on = on; relay_apply(i); }
static void toggle_relay(uint8_t i) { ch[i].relay_on = !ch[i].relay_on; relay_apply(i); }
// ========================= Timers =========================
static void scan_timer_cb(TimerHandle_t xTimer) { (void)xTimer;
for (uint8_t i = 0; i < 8; i++) {
    bool sample = read_input_raw(i);

    if (sample == in_db[i].debounced) {
        // Already matching debounced state; reset counter
        in_db[i].stable_count = 0;
    } else {
        // Moving towards new state; require N stable samples
        if (++in_db[i].stable_count >= DEBOUNCE_STABLE_COUNT) {
            in_db[i].stable_count = 0;
            in_db[i].last_debounced = in_db[i].debounced;
            in_db[i].debounced = sample;

            // Edge detection: toggle relay on rising edge by default
            if (!in_db[i].last_debounced && in_db[i].debounced) {
                // If pattern mode is enabled, disable it on manual input edge (optional)
                if (ch[i].pattern_enable) {
                    ch[i].pattern_enable = false;
                    ESP_LOGI(TAG, "CH%u pattern disabled by input", i);
                } else {
                    toggle_relay(i);
                    ESP_LOGI(TAG, "CH%u toggled by input -> %s", i, ch[i].relay_on ? "ON" : "OFF");
                }
            }

            // Long-press logic could be added here by measuring time-in-state if desired.
        }
    }
}
}
static void pattern_timer_cb(TimerHandle_t xTimer) { (void)xTimer;
for (uint8_t i = 0; i < 8; i++) {
    if (!ch[i].pattern_enable) continue;

    ch[i].pattern_elapsed_ms += 100;
    if (ch[i].pattern_elapsed_ms >= PATTERN_TOGGLE_PERIOD_MS) {
        ch[i].pattern_elapsed_ms = 0;
        toggle_relay(i);
        ESP_LOGD(TAG, "CH%u pattern toggle -> %s", i, ch[i].relay_on ? "ON" : "OFF");
    }
}
}
// ========================= Public API (examples) =========================
static void enable_pattern(uint8_t i, bool en) { ch[i].pattern_enable = en; ch[i].pattern_elapsed_ms = 0; ESP_LOGI(TAG, "CH%u pattern %s", i, en ? "ENABLED" : "DISABLED"); }
static void all_relays(bool on) { for (uint8_t i = 0; i < 8; i++) set_relay(i, on); }
// ========================= Init =========================
static void init_gpio(void) { // Relays gpio_config_t io = { .pin_bit_mask = 0, .mode = GPIO_MODE_OUTPUT, .pull_up_en = GPIO_PULLUP_DISABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE, .intr_type = GPIO_INTR_DISABLE }; for (uint8_t i = 0; i < 8; i++) { io.pin_bit_mask |= (1ULL << relay_pins[i]); } ESP_ERROR_CHECK(gpio_config(&io));
// Safe state: OFF
for (uint8_t i = 0; i < 8; i++) {
    ch[i].relay_on = false;
    ch[i].pattern_enable = false;
    ch[i].pattern_elapsed_ms = 0;
    relay_apply(i);
}

// Inputs
gpio_config_t in = {
    .pin_bit_mask = 0,
    .mode = GPIO_MODE_INPUT,
    .pull_up_en = ENABLE_INTERNAL_PULLUPS ? GPIO_PULLUP_ENABLE : GPIO_PULLUP_DISABLE,
    .pull_down_en = GPIO_PULLDOWN_DISABLE,
    .intr_type = GPIO_INTR_DISABLE
};
for (uint8_t i = 0; i < 8; i++) {
    in.pin_bit_mask |= (1ULL << input_pins[i]);
}
ESP_ERROR_CHECK(gpio_config(&in));

// Initialize debounce states to current
for (uint8_t i = 0; i < 8; i++) {
    in_db[i].debounced = read_input_raw(i);
    in_db[i].last_debounced = in_db[i].debounced;
    in_db[i].stable_count = 0;
}
}
void app_main(void) { ESP_LOGI(TAG, "8-Gang Smart Switch boot");
init_gpio();

// Timers
scan_timer = xTimerCreate("scan", pdMS_TO_TICKS(DEBOUNCE_INTERVAL_MS), pdTRUE, NULL, scan_timer_cb);
pattern_timer = xTimerCreate("pattern", pdMS_TO_TICKS(100), pdTRUE, NULL, pattern_timer_cb);
xTimerStart(scan_timer, 0);
xTimerStart(pattern_timer, 0);

// Example: enable pattern on channel 0 and 1
// enable_pattern(0, true);
// enable_pattern(1, true);

// Main task can handle commands, comms, etc.
while (true) {
    vTaskDelay(pdMS_TO_TICKS(1000));
    // Heartbeat / stats
    // ESP_LOGI(TAG, "Alive");
}
}
How to adapt
  • Assign pins: replace relay_pins[] and input_pins[] with your real GPIOs. On ESP32-family, avoid bootstrapped pins for GPIO assignments when possible.
  • Polarity: set active_low_inputs[] and invert_relay[] to match your hardware.
  • Pattern: enable per channel with enable_pattern(i, true). The period is exactly 1000 ms.
  • Debounce: DEBOUNCE_STABLE_COUNT x DEBOUNCE_INTERVAL_MS gives exactly 25 ms now; adjust as needed.
Safety reminders
  • Your hardware already isolates 230 Vac; keep that isolation boundary in firmware assumptions too: never bind mains and logic grounds.
  • Default all relays OFF at boot and on faults.
  • For I2C displays later, remember: use 4.7k pull-ups and keep total bus capacitance at or below 400 pF.
If you prefer Arduino instead of ESP-IDF, say “Arduino version” and I’ll provide it. If you share your exact pin map and active levels, I’ll tailor this code to your design.
Share pin map
Set active levels
Add I2C display
Debounce tweak
Pattern mode control

Ready to start.

Show Plan


R22
Resistance
536 Ω
R21
Resistance
1K Ω
IO5
R23
Resistance
1K Ω
AA5
IO4
AA4
R24
Resistance
536 Ω
D4
C16
Capacitance
100nF
D5
+12V
ADC Amplifier
U12


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

ESP32-S3 - PLC for Home and Small industry

ESP32-S3 - PLC for Home and Small industry
Description

Created
Last updated by rafalozano
2 Contributor(s)
rafalozano
chrisberry

Controls

Properties

Availability & Pricing

DistributorQty 1
Arrow$1.94–$3.59
Digi-Key$6.26–$12.27
LCSC$12.11–$12.17
Mouser$10.38
Verical$2.03–$3.55

Assets