• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
A
K

875105359001

875105359001
Description

Created
January 31st 2022
Last updated by adrian95
a year ago
2 Contributor(s)
jharwinbarrozo
adrian95

Controls

Properties

Capacitance
10u F
Max Reverse Voltage
16 V
Part Type
Polarized Capacitor
Manufacturer Name
Manufacturer Part Number
875105359001
Designator Prefix
C

Availability & Pricing

DPNStockQty 1
3190–929$0.2511–$0.51
1159$0.51
10$0.2934

Assets

    Footprint
  • CP_Elec_5x5.3.kicad_mod

    id=CP_Elec_5x5.3

  • 3d Model
  • CP_Elec_5x5.3.step

    id=3D_CP_Elec_5x5.3

  • Thumbnail
  • thumbnail
    image-removebg-preview.png

    id=image-removebg-preview

  • Default
  • thumbnail
    polarized-cap.svg

    id=polarized-cap

Simulation

µs

Simulation Speed

whats the pricing and availability of this part?
@copilot whats the pricing and availability of this part?
1mo
The part you're inquiring about is 875105359001, a 10 µF Aluminum Polymer Capacitor from Würth Elektronik. Here are the pricing and stock details from different distributors:

  • Digi-Key

    • Price: $0.279–$0.51
    • Stock: 929–8,000 units
    • Life Cycle Status: Active
  • Mouser

    • Price: $0.51
    • Stock: 2,200 units
    • Life Cycle Status: Not Available (N/A)
  • LCSC

    • Price: $0.2934
    • Stock: 0 units
    • Life Cycle Status: Not Available (N/A)
If you need further details, let me know!
1mo
@copilot.difference between polarised and non polarised capacitor
@copilot.difference between polarised and non polarised capacitor
1y
Polarized and non-polarized capacitors differ in their construction, application, and usage restrictions. Here are the main differences between them:

  1. Polarity: Polarized capacitors, such as electrolytic or tantalum capacitors, have a positive (+) and negative (-) terminal, making them sensitive to the direction of the voltage applied. Non-polarized capacitors, like ceramic or film capacitors, do not have specific terminals for positive or negative voltage and can be connected either way.
  2. Construction: Polarized capacitors usually have a dielectric made of an oxide layer formed on a metal (aluminum or tantalum), while non-polarized capacitors use dielectrics like ceramic, plastic, or paper films. The construction of polarized capacitors typically allows for higher capacitance values in a smaller package compared to non-polarized capacitors.
  3. Applications: Polarized capacitors are commonly used in low-frequency, high-capacitance applications, such as power supply filtering, decoupling, or coupling in audio circuits. Non-polarized capacitors, on the other hand, are suitable for high-frequency applications, signal filtering, and decoupling, as they generally have lower Equivalent Series Resistance (ESR) and better high-frequency performance.
  4. Usage restrictions: Since polarized capacitors are sensitive to the direction of voltage, they could be damaged or fail when exposed to reverse voltage or excessive voltage. Non-polarized capacitors do not have such restrictions, making them more versatile and easier to use in various applications.
1y
hacer un circuito de sensor led
2mo
Para crear un circuito básico de sensor LED, puedes usar un LED junto con un sensor de luz (como un LDR - Light Dependent Resistor o fotocélula) y un transistor para controlar el encendido o apagado del LED en función de la cantidad de luz detectada. Aquí tienes un esquema básico para construir este circuito:
Componentes necesarios:

  • 1x LED
  • 1x Resistor limitador de corriente para el LED (por ejemplo, 220 Ω)
  • 1x LDR (Resistor Dependente de Luz)
  • 1x Resistor fijo (por ejemplo, 10k Ω) para formar un divisor de voltaje con el LDR
  • 1x Transistor NPN (por ejemplo, BC547)
  • 1x Fuente de alimentación (batería o adaptador de 5V)
Conexiones:

  1. Divisor de Voltaje:

    • Conecta un terminal del LDR a VCC.
    • Conecta el otro terminal del LDR a un terminal del resistor de 10k Ω.
    • Conecta el otro terminal del resistor de 10k Ω a GND.
  2. Transistor:

    • Conecta el punto común entre el LDR y el resistor de 10k Ω a la base del transistor NPN (BC547).
    • Conecta el emisor del transistor NPN a GND.
    • Conecta el colector del transistor NPN al cátodo del LED (lado más corto o plano del LED).
  3. LED y Resistor Limitador de Corriente:

    • Conecta el ánodo del LED (lado más largo) al extremo libre de un resistor de 220 Ω.
    • Conecta el otro extremo del resistor de 220 Ω a VCC.
Descripción del funcionamiento:

  • Luz Baja: El LDR tiene una alta resistencia, lo que hace que el voltaje en la base del transistor sea suficientemente bajo para mantenerlo apagado. Por lo tanto, el LED se apaga.
  • Luz Alta: El LDR tiene una baja resistencia, elevando el voltaje en la base del transistor lo suficiente como para encenderlo, permitiendo que la corriente fluya a través del LED y lo encienda.
Si tienes alguna pregunta adicional o necesitas ayuda con el diseño del circuito usando Flux, avísame.
2mo
podrias ayudarme a armar el circuito
2mo
¡Por supuesto! Vamos a detallar cómo armar el circuito paso a paso utilizando la plataforma Flux. Si tienes las herramientas para construirlo físicamente, también podrás seguir con base en las conexiones descritas.
Paso a Paso para Diseñar un Circuito de Sensor LED en Flux Componentes del Circuito:

  • LED (D1)
  • Resistor Limitador de Corriente (R1): Valor típico de 220 Ω
  • LDR (R2)
  • Resistor Fijo (R3): Valor típico de 10 kΩ
  • Transistor NPN (Q1): un BC547 es común
  • Fuente de Alimentación: 5V
Proceso de Diseño en Flux

  1. Agrega los Componentes:

    • Busca y coloca un componente LED en el esquema. Etiquétalo como D1.
    • Agrega dos resistores, uno como R1 de 220 Ω y otro como R3 de 10 kΩ.
    • Coloca un LDR, etiquétalo como R2.
    • Añade un transistor NPN, etiquétalo como Q1.
    • Añade una fuente de alimentación de 5V.
  2. Conexiones del Circuito:

    • Divisor de Voltaje:

      • Conecta R2:1R2:1 a la fuente de 5V.
      • Conecta R2:2R2:2 a R3:1R3:1.
      • Conecta R3:2R3:2 a GND.
    • Transistor:

      • Conecta el nodo entre R2:2R2:2 y R3:1R3:1 a Q1:BaseQ1:Base.
      • Conecta Q1:EmisorQ1:Emisor a GND.
      • Conecta Q1:ColectorQ1:Colector a D1:CaˊtodoD1:Cátodo.
    • LED y Resistor Limitador:

      • Conecta el Ánodo de D1 al R1:1R1:1.
      • Conecta R1:2R1:2 a la fuente de 5V.
Comprobación

  • Simula el circuito en Flux para verificar que el LED se encienda cuando el LDR detecte suficiente luz.
  • Puedes ajustar el valor del resistor R3 para modificar el comportamiento del encendido del LED.
Si deseas realizar modificaciones o simular el circuito en Flux, puede ser útil para visualizar y probar el diseño. Hazme saber si necesitas más detalles o tienes alguna otra pregunta.
2mo
difference between polarised and non polarised capacitor
difference between polarised and non polarised capacitor
1y
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reac...
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reach me at any time by tagging me on comments or in the chat with my handle, @copilot.
1y
1mo
You're welcome! If you have any questions or need help with designing your circuit or anything else, feel free to ask. I'm here to assist!
1mo
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Designator
Ruleset
*`REF`*
Override rule for *`REF`*
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.