Chat

Welcome to Flux

Treat Flux like your intern. Tell it what you'd like to build and it'll get to work. You can also ask it questions, brainstorm ideas, and teach it your preferences. Learn More

Explain project
Write a project description
Find schematic issues
Create a test plan
Recommend similar parts

Ready.


please explain what GA does.

@copilot please explain what GA does.
2y
Based on the information provided in the project description, it seems that GA serves as a connection or junction point in the circuit schematic. Its designator prefix, 'P', typically corresponds to a male or female power connector or could simply represent a pad on the PCB, which is a point of connection for components.
However, please note that without a detailed description or a specific definition of GA, it's difficult to ascertain its exact functionality. These insights are based on standard electronics designations.
2y
Someone is typing...
¿Cómo describiras el circuito?

What is this
1y
@copilot ¿Cómo describiras el circuito?
2y
Las partes principales del circuito incluyen:
  • Un codificador rotativo (J1).
  • Cuatro resistencias de 10kΩ (R1, R2, R3, R4).
  • Tres condensadores de 0.1μF (C1, C2, C3).
El codificador tiene tres conexiones principales, "A", "B" y "C", que se conectan a diferentes partes del circuito. Los pines "~" en J1 también se usan, lo que indica pines sin conexión o no utilizados.
La entrada del codificador rotativo "A" (J1:A) está conectada a la redfb71897d29ad1b218ebaf2d7c6a62df9, que incluye la resistencia R3 y el condensador C3.
La entrada "B" (J1:B) está conectada a la red 38c7c61f4a5006816fef69e411565c9c, que incluye la resistencia R4 y el condensador C2.
La tercera conexión del codificador rotativo "COM" no está especificada en los detalles de las redes del proyecto, lo que podría significar que está flotante o conectada a tierra. Los pines SHIELD y SHIELD_1 están conectados a la red bd17bbcb5a2e19b462631bafc06f8833, que también incluye los condensadores C2 y C3 y la resistencia R2.
La configuración de resistencias y condensadores sugiere un posible circuito de desacoplamiento o filtrado, y su papel preciso podría depender de la aplicación específica y las señales en juego.
No se proporcionan detalles para los componentes VCC y GND, y no está claro cómo se conectan al resto del circuito basado en la información proporcionada. Si están presentes, estarían probablemente proporcionando alimentación y referencia a tierra. Puede que también haya conexión a la protección del codificador.
Ten en cuenta que debido a la falta de un diagrama de circuito y algunos detalles sobre los componentos, mi interpretación puede ser incorrecta. Te recomendaría proporcionar más información para una descripción más precisa del circuito.
2y
Someone is typing...
3
please explain what R1 does.

do you have european norms
1y
@copilot please explain what R1 does.
2y
Resistor R1 is a part of the debouncing circuitry in your project. Rotary encoders in their raw form often produce glitches or uncertain states because of mechanical bouncing. This can be a problem if the encoder is being used to send data directly into certain types of digital circuits. To handle this, engineers use debouncing circuits.
R1 specifically is used in a resistor-capacitor (RC) filter circuit with capacitor C1 to filter out signal noise from the output of the rotary encoder related to mechanical bouncing or electrical noise.
R1 is connected according to the project nets as following:
  • One terminal of R1 (P2) is connected to resistors R3 and R4.
  • The other terminal of R1 (P1) is connected to capacitor C1 and one of the pins (~) of the rotary encoder J1.
The value of R1 is 10k ohms, and given that it is connected with capacitor C1 with capacitance 0.1uF, the time constant $\tau$ of this RC filter is $R_1*C_1 = 10k \Omega * 0.1uF = 1ms$. This means the filter will allow changes at a rate slower than 1 kHz (1/1ms) and higher frequency changes (noise) will be attenuated.
Please note that the precise function of R1 could change based on the overall system schematic and goals of the design. It'd be best to look at the complete schematic for a definitive answer. However, based on standard practices and the given information, this should be accurate.
2y
@copilot me lo dices pero en español porfa
2y
La resistencia R1 es parte del circuito de eliminación de rebotes en tu proyecto. Los codificadores rotatorios en su forma original a menudo producen glitches o estados inciertos debido al rebote mecánico. Esto puede ser un problema si el codificador se usa para enviar datos directamente a ciertos tipos de circuitos digitales. Para manejar esto, los ingenieros usan circuitos de eliminación de rebotes.
R1 se utiliza específicamente en un circuito de filtro de resistencia-capacitancia (RC) con el condensador C1 para filtrar el ruido de la señal proveniente de la salida del codificador rotatorio debido al rebote mecánico o al ruido eléctrico.
R1 está conectado de acuerdo a las redes del proyecto de la siguiente manera:
  • Un terminal de R1 (P2) está conectado a las resistencias R3 y R4.
  • El otro terminal de R1 (P1) está conectado al condensador C1 y a uno de los pines (~) del codificador rotatorio J1.
El valor de R1 es de 10k ohmios, y dado que está conectado con el condensador C1 con una capacitancia de 0.1uF, la constante de tiempo $\tau$ de este filtro RC es $R_1*C_1 = 10k \Omega * 0.1uF = 1 ms$. Esto significa que el filtro permitirá cambios a una velocidad más lenta de 1 kHz (1/1ms) y los cambios de mayor frecuencia (ruido) se atenuarán.
Ten en cuenta que la función precisa de R1 podría cambiar en función del esquema del sistema en general y de los objetivos del diseño. Sería mejor mirar el esquema completo para obtener una respuesta definitiva. Sin embargo, basado en las prácticas estándar y la información proporcionada, esto debería ser preciso.
2y
Someone is typing...
7
do you have european norms

@copilot do you have european norms
1y
I can provide guidance on common European norms related to electronics design, such as the EU's Restriction of Hazardous Substances (RoHS) directive or the Electromagnetic Compatibility (EMC) directive, among others. However, it's important to consult the latest regulations or standards documentation for the most accurate and up-to-date information, as I can't access live databases or updates post my last training cut-off in September 2023.
For PCB design and component selection in the context of European norms, here are general considerations you might find helpful:
  1. RoHS Compliance: Ensure that all components selected for your project are RoHS compliant. This means they are free (or within accepted levels) of lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).
  2. WEEE: The Waste Electrical and Electronic Equipment Directive aims at reducing the waste of electrical and electronic equipment. Make sure to consider recyclability and proper disposal methods in the design phase.
  3. EMC Directive 2014/30/EU: This requires electronic projects to comply with certain immunity and emissions requirements to avoid interfering with other equipment and to withstand interference from other equipment.
  4. Low Voltage Directive (LVD) 2014/35/EU: If your project connects to the mains (50-1000 V AC or 75-1500 V DC), it must be safe and not pose any electrical hazard.
  5. CE Marking: Ensuring your electronic project is compliant with the necessary EU directives (like RoHS, EMC, LVD) allows it to be CE marked, which is mandatory for marketing your product in the European Economic Area (EEA).
  6. EN Standards: Various EN (European Norm) standards could apply to your product depending on its nature. For example, EN 61010 for safety requirements of electrical equipment for measurement, control, and laboratory use, or EN 55032 for Electromagnetic compatibility of multimedia equipment - Emission requirements.
Remember, compliance not only involves the selection of components but also design considerations like board layout for EMC, proper labelling, documentation, and sometimes third-party testing.
If you have specific questions about standards or compliance related to a component or aspect of your design, feel free to ask!
1y
can i replace the templates with the european norms
1y
Replacing the templates with European norms in your electronic designs can mean ensuring that your design templates, including symbols, footprints, and component selection, align with European standards and regulations. However, specific "templates" might not be readily replaceable without understanding how these standards apply to various aspects of the design, such as component selection, PCB layout, and labeling. Here's how you can aim to align your design with European norms:
  1. Component Selection: Ensure all components are RoHS compliant and preferably have CE marking if applicable. This might also involve selecting components that have been tested for EMC compliance and safety according to relevant EN standards.
  2. PCB Design and Layout: Use design rules and practices that conform to European standards for safety and EMC. For example, EN 55032 for EMC compliance might influence your trace routing, grounding practices, and shield placement to minimize electromagnetic interference.
  3. Labeling and Documentation: Adopt templates for your schematics and PCB layouts that include proper labeling for terminals, warnings, and safety instructions according to European standards like EN 61010-1 for safety requirements. Make sure that all required labels for compliance, such as the CE mark, are included in the design for applicable products.
  4. Testing and Verification: Incorporate points in your design template for testing access that can facilitate compliance testing with European standards. This could mean including test points for EMC testing or ensuring that your design can easily be tested for electrical safety according to the Low Voltage Directive.
  5. Design and Process Documentation: Adapt your documentation templates to include information required for compliance with European directives. This includes a Bill of Materials (BOM) highlighted for RoHS compliance, EMC test reports, safety assessments, and a Declaration of Conformity.
If you're working within a specific electronic CAD program like Flux.ai, you may need to manually adjust your templates and design practices based on these criteria. Unfortunately, CAD programs may not offer a "one-click" method to switch all practices to align with European norms, as it involves a comprehensive approach across all stages of design and documentation. However, European norms and directives should guide your design decisions, component selections, and documentation practices from the outset of your project.
1y
Someone is typing...
12
para que sirven el capacitor c2 y c3 ?

@copilot para que sirven el capacitor c2 y c3 ?
2y
Los capacitores C2 y C3 en este circuito probablemente están sirviendo como capacitors de desacoplamiento. Esto usualmente se hace para "limpiar" la señal o tensión en las líneas de alimentación al absorber las fluctuaciones bruscas de tensión (ruido eléctrico).
  • C2 se encuentra entre la entrada/bornes de la línea J1:SHIELD/J1:SHIELD__1 y tierra.
  • C3 se encuentra entre la entrada/bornes de la línea J1:A y tierra.
La capacitancia típica para este tipo de desacoplamiento es de 0.1uF, que es el dato aportado por ambos condensadores. Por lo tanto, asumo que están actuando para estabilizar estas entradas, neutralizando cualquier interferencia de alta frecuencia que pueda distorsionar las mediciones del codificador rotativo.
Cabe destacar que estos son supuestos basados en las prácticas estándar de diseño de circuitos y pueden no reflejar la intención exacta del diseñador de este circuito.
2y
@copilot y las resistencias R4 y R3 ?
2y
Las resistencias R4 y R3 parecen estar organizadas forma que podrían estar actuando como resistencias "pull-up" en el circuito. Esto se infiere en base a las conexiones y valores especificados:
  • R4 se encuentra entre las líneas R1:P2, R3:P1 y J1:B.
  • R3 se encuentra entre la línea R3:P2, J1:A y la línea R1:P2, R4:P1.
En los sistemas digitales, las resistencias "pull-up" se utilizan para garantizar que una línea se encienda a un valor conocido si no se está conduciendo nada en la línea. También puede ayudar a reducir el ruido al mantener la línea en un estado estable.
Por lo general, el valor de estas resistencias puede variar en un rango, pero un valor comúnmente usado es 10kΩ, que es el valor especificado para estas dos resistencias en el circuito.
Ten en cuenta que estas son suposiciones basadas en los datos provistos y pueden no representar exactamente las intenciones del diseñador circuito.
2y
Someone is typing...
10
Qué voltaje hay en R4 ?

@copilot Qué voltaje hay en R4 ?
2y
Lo siento, pero no puedo proporcionar esa información ya que no tengo la capacidad para simular circuitos o calcular valores en tiempo real. Te recomiendo que utilices un simulador de circuitos o un multímetro para medir el voltaje a través de la resistencia R4 en tu circuito. También, la información de voltaje puede depender de otras condiciones en tu circuito, como la fuente de alimentación y cómo están conectadas otras componentes.
2y
Someone is typing...
2
explain this project.

@copilot explain this project.
1y
This project is a rotary encoder circuit. A rotary encoder is a position sensor used to determine the angular position of a rotating shaft. The specific part used in this design is the PEC11R-4215F-S0024 from Bourns Inc.
Breakdown of Components and Connections Rotary Encoder (J1)
  • J1 (PEC11R-4215F-S0024) by Bourns Inc.
    • Pins:
      • Pin 1 ($\sim$)
      • Pin 2 (COM)
      • Pin 3 (SHIELD)
      • Pin 4 (SHIELD__1)
      • Pin 5 (B)
      • Pin 6 (A)
      • Pin 7 ($\sim$)
    • Function: Detects rotational position and provides two outputs (A and B) that are usually processed to determine the direction and amount of rotation.
Resistors
  • R1, R2, R3, R4: 10k ohm
    • Used to pull up or pull down the signals to avoid floating states and for signal conditioning.
Capacitors
  • C1, C2, C3: 0.1uF
    • Used for debouncing and noise filtering.
Power and Ground
  • VCC
    • Power supply pin.
  • GND
    • Ground.
Nets and Connections
  1. Net: Net (R1 - P2)
    • Connects R1:P2 to R3:P1 and R4:P1.
  2. Net: Net (C1 - P2)
    • Connects C1:P2 to R1:P1 and J1:$\sim$.
  3. Net: GND
    • Connects C2:P2, J1:SHIELD, R2:P2, J1:SHIELD__1, C3:P2.
  4. Net: Net (GB)
    • Connects R4:P2, C2:P1, and J1:B.
  5. Net: Net (C1 - P1)
    • Connects C1:P1, R2:P1, and J1:$\sim$.
  6. Net: Net (J1 - A)
    • Connects J1:A, C3:P1, and R3:P2.
Assumptions:
  • The net names suggest connections for common rotary encoder setup:
    • A and B pins from the rotary encoder are used for the quadrature signals.
    • The capacitors are used for debouncing the mechanical contacts within the rotary encoder.
    • Resistors are typically used to pull the signal lines high or low as needed.
Overall Circuit Function:
  • Rotary Encoder Outputs: The encoder will provide two signals (A and B). These signals will change based on the rotation of the encoder's shaft.
  • Signal Conditioning: The resistors and capacitors will help in conditioning these signals by pulling up/down the signals and filtering noise.
Connection Instructions:
  1. Connect Capacitors to Filter Signals:
    • Connect C3:P1 to J1:A
    • Connect C2:P1 to J1:B
    • Connect C1:P1 to J1:$\sim$
  2. Connect Pull-Up Resistors:
    • Connect R3:P1 to R4:P1 and R1:P2
    • Connect R2:P1 to C1:P1
  3. Connect Common Ground:
    • Connect GND to J1:SHIELD, J1:SHIELD__1, C2:P2, R2:P2, and C3:P2
  4. Rotary Encoder Pins:
    • Connect J1:A to C3:P1 and R3:P2
    • Connect J1:$\sim$ to C1:P2 and R1:P1
This should give you a functioning rotary encoder circuit where the signals A and B can be read and processed to determine the position of the rotating shaft.
1y
Someone is typing...
13
list all J1 pins in a table format. For each pin provide its pin number, pin nam...

@copilot list all J1 pins in a table format. For each pin provide its pin number, pin name and function.
1y
Certainly! Below is the table with the pin details for the rotary encoder PEC11R-4215F-S0024 which is designated as J1:

Table


Pin NumberPin NameFunction
1$\sim$Not Connected
2COMCommon
3SHIELDShield
4SHIELD__1Shield Alternate
5BChannel B
6AChannel A
7$\sim$Not Connected
Feel free to let me know if you need any other details!
1y
Someone is typing...
14
explain this project.

@copilot explain this project.
2y
This project revolves around a rotary encoder, which is a type of sensor that determines the angular position of a rotating shaft. The specific rotary encoder used in this project is the PEC11R-4215F-S0024 made by Bourns Inc.
In terms of the overall circuit layout, it seems to include pull-down resistors, decoupling capacitors, and a rotary encoder. Both the rotary encoder and the pull-down resistors are connected to ground and voltage. The main purpose of this kind of circuit could be to deliver a clean signal from the rotary encoder to a microcontroller or some other type of device sensitive to rotating action.
Here are some of the main components and their connections:
  1. Rotary Encoder (Designator: J1): Connected to resistors R1, R2 and connected to capacitors C1, C2, C3 for decoupling. Has two main signal pins 'A' and 'B' which provide digital output tracking the rotation. These pins are associated with resistors R3 and R4 and capacitors C2 and C3.
  2. Resistors (Designator: R1, R2, R3, R4): These are all 10k resistors. Resistors R2 and R1 are connected to the encoder and work likely as pull-down resistors. R3 and R4 are connected to the 'A' and 'B' pins of the rotary encoder.
  3. Capacitors (Designator: C1, C2, C3): These are all 0.1u capacitors, likely used as decoupling capacitors to filter out any high-frequency noise in the power supply. They are connected to the encoder (J1) on one side and to the resistors (R1, R2) on the other side.
The circuit also includes component designators GB, GA, VCC, and GND, but these seem to be unspecified for this project.
The net lists given at the end define how these components are interconnected. Notice the multiple ground connections referenced in the nets, indicating a common ground for the components.
That's the basic rundown of the project based on the given schematic description. To fully understand the system operation, additional information such as the overall system's purpose and the specific roles of each component in the system would be helpful. The user can provide clarifications if any part of the description doesn't align with their understanding or intent.
2y
Someone is typing...
5
J1
R4
Resistance
10k Ω
R1
Resistance
10k Ω
C1
Capacitance
0.1u F
SW
VCC
GND
C3
Capacitance
0.1u F
C2
Capacitance
0.1u F
GB
R2
Resistance
10k Ω
R3
Resistance
10k Ω


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

Rotary Encoder

Rotary Encoder
Description

Created
Last updated by nirav437
3 Contributor(s)
vasyl
jharwinbarrozo
nirav437

Controls

Properties

Designator Prefix
M

Availability & Pricing

DistributorQty 1
Digi-Key$2.12
LCSC$2.08
Mouser$1.80

Assets