ESP32-C3 Pinout Comparison

5:52

General
Chat History
Project
Net 3
Entendi: você quer a lista completa dos pinos do ESP32‑C3FH4 com os nomes “funcionais” e também como eles aparecem no seu projeto, incluindo sufixos como “__1”. No Flux, quando um mesmo pino lógico tem mais de um “ponto” no símbolo, o editor pode criar “aliases” do mesmo nó elétrico com sufixos como “__1”, “__2” para distinguir gráficos separados, mas todos pertencem ao mesmo pino físico e à mesma rede.
Abaixo segue o mapeamento pino a pino do pacote VFQFN‑32, cruzando:
  • Número físico do pino
  • Nome funcional comum (datasheet/KiCad-style)
  • Nome/uso esperado no projeto atual do Flux (com exemplos de sufixos vistos no seu projeto)
Observações importantes sobre sufixos
  • VDD3P3, VDD3P3__1, VDD3P3_CPU, VDD3P3_RTC, VDD_SPI são domínios diferentes ou instâncias repetidas no símbolo. “__1” não muda a função; é o mesmo net/mesmo pino lógico, só uma segunda instância gráfica.
  • Para sinais seriais/USB/UART, alguns nós podem aparecer como GPIOxx e/ou nomes alternativos (DN/DP, U0RXD/U0TXD). Conectam ao mesmo pino físico.
Mapa pino a pino (VFQFN‑32)
  1. Pino 1
  • Função: LNA_IN
  • No projeto: IC1 LNA_IN
  1. Pino 2
  • Função: VDD3P3 (domínio 3V3 periférico)
  • No projeto: VDD3P3 ou VDD3P3__1 sob o net de 3V3
  1. Pino 3
  • Função: VDD3P3 (mesmo domínio 3V3 periférico)
  • No projeto: VDD3P3 (pode aparecer com “__1” em outra instância)
  1. Pino 4
  • Função: GPIO0 / XTAL_32K_P
  • No projeto: GPIO0/XTAL_32K_P
  1. Pino 5
  • Função: GPIO1 / XTAL_32K_N
  • No projeto: GPIO1/XTAL_32K_N
  1. Pino 6
  • Função: GPIO2
  • No projeto: GPIO2
  1. Pino 7
  • Função: CHIP_EN
  • No projeto: CHIP_EN ligado a R1 via Net 1
  1. Pino 8
  • Função: GPIO3
  • No projeto: GPIO3
  1. Pino 9
  • Função: GPIO4 / MTMS
  • No projeto: GPIO4/MTMS
  1. Pino 10
  • Função: GPIO5 / MTDI
  • No projeto: GPIO5/MTDI
  1. Pino 11
  • Função: VDD3P3_RTC
  • No projeto: VDD3P3_RTC
  1. Pino 12
  • Função: GPIO6 / MTCK
  • No projeto: GPIO6/MTCK
  1. Pino 13
  • Função: GPIO7 / MTDO
  • No projeto: GPIO7/MTDO
  1. Pino 14
  • Função: GPIO8
  • No projeto: GPIO8
  1. Pino 15
  • Função: GPIO9
  • No projeto: GPIO9
  1. Pino 16
  • Função: GPIO10
  • No projeto: GPIO10
  1. Pino 17
  • Função: VDD3P3_CPU
  • No projeto: VDD3P3_CPU
  1. Pino 18
  • Função: VDD_SPI
  • No projeto: VDD_SPI
  1. Pino 19
  • Função: GPIO12 / SPIHD
  • No projeto: GPIO12/SPIHD
  1. Pino 20
  • Função: GPIO13 / SPIWP
  • No projeto: GPIO13/SPIWP
  1. Pino 21
  • Função: GPIO14 / SPICS0
  • No projeto: GPIO14/SPICS0
  1. Pino 22
  • Função: GPIO15 / SPICLK
  • No projeto: GPIO15/SPICLK
  1. Pino 23
  • Função: GPIO16 / SPID
  • No projeto: GPIO16/SPID
  1. Pino 24
  • Função: GPIO17 / SPIQ
  • No projeto: GPIO17/SPIQ
  1. Pino 25
  • Função: GPIO18 / USB_D−
  • No projeto: GPIO18/USB_D−, também pode aparecer como DN; conectado ao USB DN do J2 via Net 17
  1. Pino 26
  • Função: GPIO19 / USB_D+
  • No projeto: GPIO19/USB_D+, também pode aparecer como DP; conectado ao USB DP do J2 via Net 16
  1. Pino 27
  • Função: GPIO20 / U0RXD
  • No projeto: U0RXD ou GPIO20/U0RXD (Net 9 no seu esquemático mostra U0RXD)
  1. Pino 28
  • Função: GPIO21 / U0TXD
  • No projeto: U0TXD ou GPIO21/U0TXD (Net 8 no seu esquemático mostra U0TXD)
  1. Pino 29
  • Função: XTAL_N
  • No projeto: XTAL_N (ligado a Y1 e C8 via Net 4)
  1. Pino 30
  • Função: XTAL_P
  • No projeto: XTAL_P (ligado a Y1 e C9 via Net 5)
  1. Pino 31
  • Função: VDDA (analógico)
  • No projeto: VDDA (ver com C7)
  1. Pino 32
  • Função: VDD3P3 (periférico)
  • No projeto: VDD3P3 (ou VDD3P3__1 dependendo da instância no símbolo)
  1. Pad exposto (centro)
  • Função: GND (PAD térmico)
  • No projeto: GND/PAD do IC1, aterrado junto a AGND/PGND no plano
Por que aparecem “VDD3P3__1”, “VDD3P3__2”, etc.?
  • São múltiplas instâncias gráficas do mesmo pino/mesmo net no símbolo para facilitar o desenho. Eletricamente é o mesmo nó. O roteamento/PCB considerarão um único pino físico correspondente no encapsulamento.
Quer que eu verifique dentro do seu projeto se todas as redes de alimentação do IC1 (VDD3P3, VDD3P3_RTC, VDD3P3_CPU, VDD_SPI, VDDA) estão realmente ligadas ao mesmo trilho de 3V3 via os indutores/LC previstos e com os capacitores de desacoplamento corretos? Posso revisar e apontar qualquer divergência.
75 days

Ready.


add rgb led

@copilot add rgb led
1y
To add an RGB LED to your ESP32-C3 reference design, you'll need to follow these steps:
  1. Choose the RGB LED: Let's assume you're using a common cathode RGB LED with designator LED1.
  2. Connect the LED pins:
    • Resistor Selection: Use current-limiting resistors for each color channel. Let's choose 330Ω resistors for this example.
  3. Connections to the ESP32-C3:
    • Typically, you would connect the anodes (positive terminals) of the RGB LED to GPIO pins of the microcontroller.
    • The cathode (negative terminal) is usually connected to GND.
Based on the ESP32-C3 datasheet, the GPIO pins can be used for control. Here are the detailed steps:
Step-by-Step Wiring:
  1. LED Connections:
    • Red LED: Connect anode through a 330Ω resistor (R5) to GPIO10.
    • Green LED: Connect anode through a 330Ω resistor (R6) to GPIO9.
    • Blue LED: Connect anode through a 330Ω resistor (R7) to GPIO8.
    • Cathode to GND.
Add Components to your Project: RGB LED
  • Designator: LED1
  • Pins: 4
    • Pin 1: R (connect to GPIO10 through resistor)
    • Pin 2: G (connect to GPIO9 through resistor)
    • Pin 3: B (connect to GPIO8 through resistor)
    • Pin 4: Cathode (connect to GND)
Resistors
  • Designator: R5, R6, R7
    • Resistance: 330Ω
Connections:
  • Connect R5:2R5:2 to LED1:1LED1:1 and R5:1R5:1 to IC1:GPIO10IC1:GPIO10.
  • Connect R6:2R6:2 to LED1:2LED1:2 and R6:1R6:1 to IC1:GPIO9IC1:GPIO9.
  • Connect R7:2R7:2 to LED1:3LED1:3 and R7:1R7:1 to IC1:GPIO8IC1:GPIO8.
  • Connect LED1:4LED1:4 to GND.
Example Net Assignment:
  • Net: GND (Already existing net)
    • Connect LED1:4LED1:4 to GND
Integration into your Design:
Adjust your schematic to include these components and connections. Here's a summarized version:
  1. Add RGB LED:
    • Connect R5:2R5:2 to LED1:1LED1:1, R6:2R6:2 to LED1:2LED1:2, R7:2R7:2 to LED1:3LED1:3, and LED1:4LED1:4 to GND.
    • Connect R5:1R5:1 to IC1:GPIO10IC1:GPIO10.
    • Connect R6:1R6:1 to IC1:GPIO9IC1:GPIO9.
    • Connect R7:1R7:1 to IC1:GPIO8IC1:GPIO8.
Would you like further assistance with the component values or the layout?
1y
can you add it into the schematic?
1y
Sure, here's how you can add the RGB LED and associated components to your schematic on Flux:
Step 1: Add Components to Schematic
RGB LED (LED1):
  1. Go to the "Add Component" section in Flux.
  2. Search for an RGB LED component and place it onto your schematic.
  3. Label the RGB LED as LED1.
Resistors (R5, R6, R7):
  1. Search for 330Ω resistors and place three of them onto your schematic.
  2. Label these resistors as R5, R6, and R7.
Step 2: Connect Components
Connections:
  1. Red Channel:
    • Connect R5:2R5:2 to LED1:1LED1:1 (Red anode).
    • Connect R5:1R5:1 to IC1:GPIO10IC1:GPIO10.
  2. Green Channel:
    • Connect R6:2R6:2 to LED1:2LED1:2 (Green anode).
    • Connect R6:1R6:1 to IC1:GPIO9IC1:GPIO9.
  3. Blue Channel:
    • Connect R7:2R7:2 to LED1:3LED1:3 (Blue anode).
    • Connect R7:1R7:1 to IC1:GPIO8IC1:GPIO8.
  4. Cathode:
    • Connect LED1:4LED1:4 (cathode) to the GND net.
Adding Connections in Netlist Form:
Here is a concise list of connections you need to make:
  • Connect R5:2R5:2 to LED1:1LED1:1, R5:1R5:1 to IC1:GPIO10IC1:GPIO10.
  • Connect R6:2R6:2 to LED1:2LED1:2, R6:1R6:1 to IC1:GPIO9IC1:GPIO9.
  • Connect R7:2R7:2 to LED1:3LED1:3, R7:1R7:1 to IC1:GPIO8IC1:GPIO8.
  • Connect LED1:4LED1:4 to GND.
Updated Schematic
Append the following components to your project list:

Plaintext


## Designator: LED1
Pins: 1 (name: R), 2 (name: G), 3 (name: B), 4 (name: Cathode)
Element Properties:
Designator Prefix: LED

## Designator: R5
Pins: 1 (name: P1), 2 (name: P2)
Element Properties:
Resistance: 330
Designator Prefix: R

## Designator: R6
Pins: 1 (name: P1), 2 (name: P2)
Element Properties:
Resistance: 330
Designator Prefix: R

## Designator: R7
Pins: 1 (name: P1), 2 (name: P2)
Element Properties:
Resistance: 330
Designator Prefix: R
And append the following to your connections:

Plaintext


## Net: Net 15 (Red Channel)
Members: R5:$$(P1)$$, LED1:$$(R)$$, IC1:$$(GPIO10)$$

## Net: Net 16 (Green Channel)
Members: R6:$$(P1)$$, LED1:$$(G)$$, IC1:$$(GPIO9)$$

## Net: Net 17 (Blue Channel)
Members: R7:$$(P1)$$, LED1:$$(B)$$, IC1:$$(GPIO8)$$

## Net: GND
Members: LED1:$$(Cathode)$$
Implementation on Flux:
  1. Place Components:
    • Add LED1, R5, R6, and R7 to the schematic.
  2. Create Nets:
    • Add connections as specified to create the nets for each channel and GND connection.
Would you like me to generate a netlist file for you to upload to Flux directly?
1y
directly
1y
Great! Below is the updated schematic information with the RGB LED and the associated components.
Updated Components
Please add these components to your project in Flux:
RGB LED (LED1):

Plaintext


## Designator: LED1
Pins: 1 (name: R), 2 (name: G), 3 (name: B), 4 (name: Cathode)
Element Properties:
Designator Prefix: LED
Resistors (R5, R6, R7):

Plaintext


## Designator: R5
Pins: 1 (name: P1), 2 (name: P2)
Element Properties:
Resistance: 330
Designator Prefix: R

## Designator: R6
Pins: 1 (name: P1), 2 (name: P2)
Element Properties:
Resistance: 330
Designator Prefix: R

## Designator: R7
Pins: 1 (name: P1), 2 (name: P2)
Element Properties:
Resistance: 330
Designator Prefix: R
Updated Nets
Add the following net connections to your project:

Plaintext


## Net: Red_Channel
Members: R5:$P1$, R5:$P2$, LED1:$R$, IC1:$GPIO10$

## Net: Green_Channel
Members: R6:$P1$, R6:$P2$, LED1:$G$, IC1:$GPIO9$

## Net: Blue_Channel
Members: R7:$P1$, R7:$P2$, LED1:$B$, IC1:$GPIO8$

## Net: GND
Members: LED1:$Cathode$
Integrate it into your Flux Project
  1. In Flux:
    • Add the new components LED1, R5, R6, and R7.
    • Use the provided net names (Red_Channel, Green_Channel, Blue_Channel, GND) to make the connections between these components and the IC1 (ESP32-C3) accordingly.
By following these steps and additions, you'll integrate the RGB LED with your ESP32-C3 reference design. If you need any additional adjustments or verification, let me know!
1y
Someone is typing...
3V3
USB_D+
USB_D-
XTALP
IO3
LNA_IN
3V3
L3
Inductance
2.2u H
URX0
L1
Inductance
2n H
XTALN
LNA_IN
C3
Capacitance
100n F
XTALN
C1
Capacitance
100n F
+5V
IO10
3V3
ESP_EN
IO8
IC1
BOOT
C7
Capacitance
100n F
R2
Resistance
5.1K Ω
R1
Resistance
10K Ω
3V3
UTX0
C2
Capacitance
100n F
C5
Capacitance
1u F
USB_D-
C4
Capacitance
10n F
C13
Capacitance
22u F
C6
Capacitance
100n F
IO2
USB_D+


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

ESP32-C3 Reference Design

ESP32-C3 Reference Design
Description

Created
Last updated by vasyl
1 Contributor(s)
vasyl

Controls

Availability & Pricing

DistributorQty 1
Digi-Key$3.00–$4.10
LCSC$4.23
Mouser$4.85

Assets