Chat

Welcome to Flux

Treat Flux like your intern. Tell it what you'd like to build and it'll get to work. You can also ask it questions, brainstorm ideas, and teach it your preferences. Learn More

Explain project
Write a project description
Find schematic issues
Create a test plan

Ready.


How can I use the pt100 and the arduino uno R3 to measure the room temperature? ...

@copilot How can I use the pt100 and the arduino uno R3 to measure the room temperature? C++ code
2y
To interface with a PT100 temperature sensor using an Arduino UNO R3, you could use an amplifier such as the MAX31865 RTD-to-Digital Converter to convert the resistance changes of the PT100 to a digital signal that the Arduino can read.
Here's a simple C++ code example that reads temperature values:

Cpp


#include 

#define MAX31865_CS 10 // Depends on your wiring

// If using normal SPI connection, make sure to comment the following lines
//#define SCK_PIN 13
//#define MISO_PIN 12
//#define MOSI_PIN 11

#include 

// Use software SPI: CS, DI, DO, CLK
Adafruit_MAX31865 max = Adafruit_MAX31865(MAX31865_CS);
// Our PT100 has 2 wire connection
uint8_t nWires = 2;

void setup() {
  Serial.begin(9600);
  
  max.begin(MAX31865_2WIRE);
}

void loop() {
  uint16_t rtd = max.readRTD();

  Serial.print("RTD value: "); Serial.println(rtd);

  float ratio = rtd;
  ratio /= 32768;
  
  Serial.print("Ratio = "); Serial.println(ratio,8);
  Serial.print("Resistance = "); Serial.println(max.temperature(RNOMINAL, RNOMINAL));
  
  Serial.print("Temperature = "); Serial.println(max.temperature(100, 4300)); // pt100: 100 Ohms, 4300 reference resistance
  delay(1000);
}
In this code, we instantiate an Adafruit_MAX31865 object named max, reading from the SPI interface. In the setup function, we initialize the max object and set our sensor to 2 wire connection mode. In the loop function, we read the RTD value from the sensor, calculate the resistance and temperature, and print them out to the Serial Monitor.
Please remember to replace the MAX31865_CS, SCK_PIN, MISO_PIN and MOSI_PIN pins in the code with the actual CS, SCK, MISO, and MOSI pins that you've connected your MAX31865 module.
Also, you may need to calibrate the 100 and 4300 values in max.temperature(100, 4300) line based on your PT100 sensor and the reference resistor on your MAX31865 module.
Without the specific schematics of the circuit, these are general instructions and might need some modifications based on your specific setup.
2y
crear un codigo para medir la temperatura ambiente con la pt100 y un arduino onr R3 ? code c++
2y
Para interfaz con un sensor de temperatura PT100 utilizando un Arduino UNO R3, podrías usar un amplificador como el MAX31865 RTD-a-Digital Converter para convertir los cambios de resistencia de la PT100 a una señal digital que el Arduino puede leer.
Aquí está un ejemplo de código C++ simple que lee los valores de temperatura:

Cpp


#include 

#define MAX31865_CS 10 // Depende de tu configuración

// Si se utiliza una conexión SPI normal, asegúrate de comentar las siguientes líneas
//#define SCK_PIN 13
//#define MISO_PIN 12
//#define MOSI_PIN 11

#include 

// Usa SPI de software: CS, DI, DO, CLK
Adafruit_MAX31865 max = Adafruit_MAX31865(MAX31865_CS);
// Nuestro PT100 tiene una conexión de 2 cables
uint8_t nWires = 2;

void setup() {
  Serial.begin(9600);
  
  max.begin(MAX31865_2WIRE);
}

void loop() {
  uint16_t rtd = max.readRTD();

  Serial.print("Valor RTD: "); Serial.println(rtd);

  float ratio = rtd;
  ratio /= 32768;
  
  Serial.print("Ratio = "); Serial.println(ratio,8);
  Serial.print("Resistencia = "); Serial.println(max.temperature(RNOMINAL, RNOMINAL));
  
  Serial.print("Temperatura = "); Serial.println(max.temperature(100, 4300)); // pt100: 100 Ohms, resistencia de referencia 4300
  delay(1000);
}
En este código, creamos un objeto Adafruit_MAX31865 llamado max, leyendo desde la interfaz SPI. En la función setup, inicializamos el objeto max y configuramos nuestro sensor para funcionar en modo de conexión de 2 cables. En la función loop, leemos el valor RTD del sensor, calculamos la resistencia y la temperatura, y las imprimimos al Monitor Serial.
Por favor, recuerda reemplazar los pines MAX31865_CS, SCK_PIN, MISO_PIN y MOSI_PIN en el código con los pines CS, SCK, MISO y MOSI reales a los que has conectado tu módulo MAX31865.
También, podrías necesitar calibrar los valores 100 y 4300 en la línea max.temperature(100, 4300) en función de tu sensor PT100 y la resistencia de referencia de tu módulo MAX31865.
Sin los esquemas específicos del circuito, estas son instrucciones generales y podrían necesitar algunas modificaciones en función de tu configuración específica.
2y
como usar la pt100 codigo c++
2y
Para usar el sensor de temperatura PT100 con un Arduino, necesitará un módulo de interfaz de hardware como el MAX31865 de Maxim Integrated, que es capaz de leer las variaciones de resistencia del PT100. Aquí tienes un ejemplo de código en C++:

Cpp


#include 
#include 

#define MAX31865_CS_PIN 10 // CS pin on the MAX31865. Modify as necessary.

Adafruit_MAX31865 max31865 = Adafruit_MAX31865(MAX31865_CS_PIN, MAX31865_2WIRE); // for 2-wire PT100 connection.

void setup() {
  Serial.begin(9600);
  max31865.begin();
}

void loop() {
  uint16_t rtd = max31865.readRTD();
  float ratio = rtd;
  ratio /= 32768;
  Serial.println("Valores leídos del sensor:");
  Serial.print("RTD: "); Serial.println(rtd);
  Serial.print("Ratio: "); Serial.println(ratio,8);
  
  float temperatura = max31865.temperature(100, 4300.0); // Para PT100, es 100 ohmios a 0 grados Celsius y constante de resistencia de 4300.

  Serial.print("Temperatura: "); Serial.println(temperatura);

  delay(1000);
}
Necesita la biblioteca Adafruit_MAX31865.h para este código, que puede instalar usando el Gestor de bibliotecas en el IDE de Arduino. También por favor asegúrese de que el pin SPI CS se ajusta a la conexión física real con su módulo MAX31865.
Los valores 100 y 4300.0 en la llamada de la función max31865.temperature(100, 4300.0) se refieren a los valores típicos para un sensor PT100: 100 ohmios a 0 grados Celsius y la constante de resistencia de 4300.
Por último, por favor tenga en cuenta que este código es un ejemplo genérico y puede necesitar modificaciones para adaptarse a su circuito específico.
2y
can you help me to connect the pt100 to the arduino ?
2y
Connecting a PT100 RTD sensor directly to Arduino is somewhat complex because the Arduino lacks the precision to read the tiny changes in resistance from the PT100 or the ability to source the constant current required to make the measurements. Generally, an RTD-to-digital converter (like the MAX31865) is used in between.
Here's a simple schematic to help you connect a PT100 with an Arduino Uno:
  1. Arduino Uno - MAX31865 Module
  • Connect 5V on the Arduino to VCC on the MAX31865.
  • Connect GND on the Arduino to GND on the MAX31865.
  • Connect D10 on the Arduino to CS on the MAX31865.
  • Connect D11 on the Arduino to SDI or DIN on the MAX31865.
  • Connect D12 on the Arduino to SDO or DO on the MAX31865.
  • Connect D13 on the Arduino to CLK on the MAX31865.
  1. MAX31865 Module - PT100 Sensor
  • Connect RTD+ on the MAX31865 to one lead of the PT100.
  • Connect RTD- on the MAX31865 to the other lead of the PT100.
  • If you're using a 3-wire PT100, connect RTD- to the second lead and RTD3 or RTDlo to the third.
For this, the MAX31865 needs to be set to the correct wiring settings. If you're using a 2-wire connection, you can use the MAX31865_2WIRE setting during initialization in the Arduino code.
Please note, this connection scheme assumes you're using the Adafruit MAX31865 module. Other modules could have different pin names. Also, double check your exact module's pinout since pin names can vary.
Lastly, always remember that it's imperative that your PT100 and MAX31865 module are correctly wired and functional to avoid causing any potential damage to the Arduino.
2y
U1


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

Indirect Pink Time Machine

Indirect Pink Time Machine
Description

Created
Last updated by valent
1 Contributor(s)
valent

Controls

Properties

Availability & Pricing

DistributorQty 1
LCSC$49.23–$49.91

Assets