Chat

Welcome to Flux

Treat Flux like your intern. Tell it what you'd like to build and it'll get to work. You can also ask it questions, brainstorm ideas, and teach it your preferences. Learn More

Explain project
Write a project description
Find schematic issues
Create a test plan

Ready.


@copilot, develop an FMEA (Failure Mode and Effects Analysis) report in a table ...

@copilot, develop an FMEA (Failure Mode and Effects Analysis) report in a table format that analyzes the systems schematic, each unique component specification, and operational parameters. It should identify critical failure modes, assess their impact, and recommend mitigation actions based on severity, occurrence probability, and detectability. Include columns such as: process step, potential failure mode, potential failure effect, S, O, D, RPN, Action Recommended, and any other you see fit.
1y
Creating a detailed FMEA (Failure Mode and Effects Analysis) report involves breaking down the system into its individual processes or components, identifying possible failure modes, and assessing their impact, likelihood of occurrence, and detectability. Below is an example of how you might structure such a table for your project. I'll provide some initial entries based on typical components found in your schematic.

Table


Process StepPotential Failure ModePotential Failure EffectS (Severity)O (Occurrence)D (Detectability)RPN (Risk Priority Number)Action Recommended
Power Supply (U1U1)Output OvervoltageDamage to ESP32 (ESP1ESP1) or other components934108Add overvoltage protection (e.g., Zener diode)
Voltage Regulator (U1U1)No output voltageSystem won't power up102360Perform regular testing and replace faulty regulators
Resistors (R1R1 - R8dR8-d)Opens or short circuitsIncorrect signal levels or power supply issues745140Utilize quality resistors with proper ratings
Capacitors (C1C1 - C4C4)Capacitance lossUnstable voltage regulation83496Use capacitors with high reliability ratings
ESP32 (ESP1ESP1)GPIO pin damageLoss of communication/control957315Implement ESD protection measures
Notes on Columns:
  • S (Severity): Scale from 1 to 10, where 10 represents a hazard without warning.
  • O (Occurrence): Scale from 1 to 10, where 10 represents failure happening very frequently.
  • D (Detectability): Scale from 1 to 10, where 10 represents failures that are not likely to be detected in time to prevent the issue.
  • RPN (Risk Priority Number): Calculated as S×O×D\text{S} \times \text{O} \times \text{D}.
  • Action Recommended: Suggests mitigation strategies to reduce risk.
Given the complexity of your entire project, additional lines would be added for each component and failure mode considered. Components are checked for their specific behaviors to ensure reliability and functionality within the entire system. If you have more specific guidelines or areas of concern, feel free to highlight them for a more tailored analysis.
1y
create a detailed step by step plan table for this project to verify its functio...

@copilot create a detailed step by step plan table for this project to verify its functionality.
1y
To verify the functionality of your electronic project, particularly involving the ESP32-S3 and other components like switches, resistors, LED display, voltage regulators, and capacitors, we'll break down the task into a step-by-step verification plan table. Here's how we can approach this:

Table


Step No.DescriptionAction Item/CheckExpected Outcome
1Power Supply VerificationMeasure the output of U1U1 on the 3V3 net.Stable output voltage of 3.3V.
2Continuity TestsCheck continuity on critical paths.No open paths; connections verified.
3ESP32 Boot TestPower on the ESP1ESP1.ESP32 boots up successfully.
4GPIO Pin FunctionalityTest GPIO pins with a basic blink code.LED (or other indicator) blinks.
5Switch FunctionalityPress SW1SW1, SW2SW2, SW3SW3, SW4SW4.Each switch triggers the expected response.
6LED Display FunctionalityActivate segments on U2U2 via GPIOs.Expected segments light up correctly.
7Resistor and Capacitor ValidationMeasure resistance and capacitance values.Values close to expected (tolerance).
8Signal Integrity CheckUse an oscilloscope on signal lines.Signals show proper waveform without distortion.
9Overall Integration TestRun an integration test with all components.System operates without error and as intended.
10Debug and Logging VerificationEnsure any debug features are active.Logs show accurate operation and assist in debugging.
Ensure to have a multimeter, oscilloscope, and possibly a logic analyzer handy for detailed analysis and debugging during these tests. Adjust the steps as needed based on specific project requirements or if any new functionality is implemented.
1y
adapta este codigo para estos componentes: // Definición de los pines para los segmentos de los displays const int segmentPinsTens[] = { 2, 3, 4, 5, 6, 7, 8 }; // a, b, c, d, e, f, g para las decenas const int segmentPinsUnits[] = { A0, A1, A2, A3, A4, A5, 9 }; // a, b, c, d, e, f, g para las unidades const int digitPins[] = { 9, 10 }; // Dígitos 1 y 2 const int buttonPin = 13; // Pin del pulsador para incrementar const int resetButtonPin = 11; // Pin del pulsador para reiniciar const int decrementButtonPin = 12; // Pin del pulsador para restar
// Matriz para los números del 0 al 9 const byte numbers[10] = { B00111111, // 0 B00000110, // 1 B01011011, // 2 B01001111, // 3 B01100110, // 4 B01101101, // 5 B01111101, // 6 B00000111, // 7 B01111111, // 8 B01101111 // 9 };
int counter = 0; // Variable para el contador int lastButtonState = HIGH; // Estado anterior del botón para incrementar int currentButtonState; // Estado actual del botón para incrementar int lastResetButtonState = HIGH; // Estado anterior del botón de reinicio int currentResetButtonState; // Estado actual del botón de reinicio int lastDecrementButtonState = HIGH; // Estado anterior del botón para restar int currentDecrementButtonState; // Estado actual del botón para restar
void setup() { // Configuración de los pines de los segmentos como salida for (int i = 0; i < 7; i++) { pinMode(segmentPinsTens[i], OUTPUT); pinMode(segmentPinsUnits[i], OUTPUT); } // Configuración de los pines de los dígitos como salida for (int i = 0; i < 2; i++) { pinMode(digitPins[i], OUTPUT); } // Configuración de los pines de los pulsadores como entrada pinMode(buttonPin, INPUT_PULLUP); pinMode(resetButtonPin, INPUT_PULLUP); pinMode(decrementButtonPin, INPUT_PULLUP); }
void loop() { // Leer el estado actual del pulsador para incrementar currentButtonState = digitalRead(buttonPin);
// Detectar si el botón ha sido presionado (cambio de estado de HIGH a LOW) if (lastButtonState == HIGH && currentButtonState == LOW) { counter++; if (counter > 99) { counter = 0; // Reiniciar el contador al llegar a 99 } displayNumber(counter); delay(300); // Anti-rebote para evitar múltiples lecturas }
// Leer el estado actual del pulsador para reiniciar currentResetButtonState = digitalRead(resetButtonPin);
// Detectar si el botón de reinicio ha sido presionado (cambio de estado de HIGH a LOW) if (lastResetButtonState == HIGH && currentResetButtonState == LOW) { counter = 0; // Reiniciar el contador displayNumber(counter); delay(300); // Anti-rebote para evitar múltiples lecturas }
// Leer el estado actual del pulsador para restar currentDecrementButtonState = digitalRead(decrementButtonPin);
// Detectar si el botón para restar ha sido presionado (cambio de estado de HIGH a LOW) if (lastDecrementButtonState == HIGH && currentDecrementButtonState == LOW) { counter--; if (counter < 0) { counter = 99; // Reiniciar el contador a 99 si es menor que 0 } displayNumber(counter); delay(300); // Anti-rebote para evitar múltiples lecturas }
// Actualizar el estado anterior del botón lastButtonState = currentButtonState; lastResetButtonState = currentResetButtonState; lastDecrementButtonState = currentDecrementButtonState; }
void displayNumber(int number) { int tens = number / 10; int units = number % 10;
// Mostrar decenas digitalWrite(digitPins[0], LOW); digitalWrite(digitPins[1], HIGH); displayDigit(tens, segmentPinsTens); delay(5);
// Mostrar unidades digitalWrite(digitPins[0], HIGH); digitalWrite(digitPins[1], LOW); displayDigit(units, segmentPinsUnits); delay(5); }
void displayDigit(int digit, const int segmentPins[]) { for (int i = 0; i < 7; i++) { digitalWrite(segmentPins[i], !bitRead(numbers[digit], i)); // Invertir el valor para cátodo común } }
1y
To adapt this code for your project with the specific components and GPIO assignments, we need to ensure all the correct pin assignments and logic are aligned with the particular setup you have, including the ESP32-S3 GPIO connections and the specific pinouts for the 7-segment display and buttons.
Given your components in the project, here's how we can adapt it:
Updated Arduino Code Adaptation

Cpp


// Definición de los pines para los segmentos de los displays
const int segmentPinsTens[] = { GPIO_NUM_3, GPIO_NUM_5, GPIO_NUM_13, GPIO_NUM_16, GPIO_NUM_14, GPIO_NUM_12, GPIO_NUM_15 }; // a, b, c, d, e, f, g para las decenas
const int segmentPinsUnits[] = { GPIO_NUM_17, GPIO_NUM_18, GPIO_NUM_19, GPIO_NUM_21, GPIO_NUM_22, GPIO_NUM_23, GPIO_NUM_25 }; // a, b, c, d, e, f, g para las unidades
const int digitPins[] = { GPIO_NUM_22, GPIO_NUM_23 }; // Pines de dígitos
const int buttonPin = GPIO_NUM_45; // Pin del pulsador para incrementar
const int resetButtonPin = GPIO_NUM_44; // Pin del pulsador para reiniciar
const int decrementButtonPin = GPIO_NUM_43; // Pin del pulsador para restar

// Matriz para los números del 0 al 9
const byte numbers[10] = {
  B00111111,  // 0
  B00000110,  // 1
  B01011011,  // 2
  B01001111,  // 3
  B01100110,  // 4
  B01101101,  // 5
  B01111101,  // 6
  B00000111,  // 7
  B01111111,  // 8
  B01101111   // 9
};

int counter = 0;                      // Variable para el contador
int lastButtonState = HIGH;           // Estado anterior del botón para incrementar
int currentButtonState;               // Estado actual del botón para incrementar
int lastResetButtonState = HIGH;      // Estado anterior del botón de reinicio
int currentResetButtonState;          // Estado actual del botón de reinicio
int lastDecrementButtonState = HIGH;  // Estado anterior del botón para restar
int currentDecrementButtonState;      // Estado actual del botón para restar

void setup() {
  // Configuración de los pines de los segmentos como salida
  for (int i = 0; i < 7; i++) {
    pinMode(segmentPinsTens[i], OUTPUT);
    pinMode(segmentPinsUnits[i], OUTPUT);
  }
  // Configuración de los pines de los dígitos como salida
  for (int i = 0; i < 2; i++) {
    pinMode(digitPins[i], OUTPUT);
  }
  // Configuración de los pines de los pulsadores como entrada
  pinMode(buttonPin, INPUT_PULLUP);
  pinMode(resetButtonPin, INPUT_PULLUP);
  pinMode(decrementButtonPin, INPUT_PULLUP);
}

void loop() {
  // Leer el estado actual del pulsador para incrementar
  currentButtonState = digitalRead(buttonPin);

  // Detectar si el botón ha sido presionado (cambio de estado de HIGH a LOW)
  if (lastButtonState == HIGH && currentButtonState == LOW) {
    counter++;
    if (counter > 99) {
      counter = 0;  // Reiniciar el contador al llegar a 99
    }
    displayNumber(counter);
    delay(300);  // Anti-rebote para evitar múltiples lecturas
  }

  // Leer el estado actual del pulsador para reiniciar
  currentResetButtonState = digitalRead(resetButtonPin);

  // Detectar si el botón de reinicio ha sido presionado (cambio de estado de HIGH a LOW)
  if (lastResetButtonState == HIGH && currentResetButtonState == LOW) {
    counter = 0;  // Reiniciar el contador
    displayNumber(counter);
    delay(300);  // Anti-rebote para evitar múltiples lecturas
  }

  // Leer el estado actual del pulsador para restar
  currentDecrementButtonState = digitalRead(decrementButtonPin);

  // Detectar si el botón para restar ha sido presionado (cambio de estado de HIGH a LOW)
  if (lastDecrementButtonState == HIGH && currentDecrementButtonState == LOW) {
    counter--;
    if (counter < 0) {
      counter = 99;  // Reiniciar el contador a 99 si es menor que 0
    }
    displayNumber(counter);
    delay(300);  // Anti-rebote para evitar múltiples lecturas
  }

  // Actualizar el estado anterior del botón
  lastButtonState = currentButtonState;
  lastResetButtonState = currentResetButtonState;
  lastDecrementButtonState = currentDecrementButtonState;
}

void displayNumber(int number) {
  int tens = number / 10;
  int units = number % 10;

  // Mostrar decenas
  digitalWrite(digitPins[0], LOW);
  digitalWrite(digitPins[1], HIGH);
  displayDigit(tens, segmentPinsTens);
  delay(5);

  // Mostrar unidades
  digitalWrite(digitPins[0], HIGH);
  digitalWrite(digitPins[1], LOW);
  displayDigit(units, segmentPinsUnits);
  delay(5);
}

void displayDigit(int digit, const int segmentPins[]) {
  for (int i = 0; i < 7; i++) {
    digitalWrite(segmentPins[i], !bitRead(numbers[digit], i));  // Invertir el valor para cátodo común
  }
}
Key Adaptations:
  • Pin Assignments: The GPIO numbers from the ESP32-S3 are used here. Replace GPIO_NUM_X with the specific GPIO you intend to use for each segment and digit.
  • Segment Pins: Ensure each GPIO pin corresponds correctly to each segment pin on your 7-segment driver. Verify the pins defined in segmentPinsTens and segmentPinsUnits accordingly.
  • Button Pins: Make sure the button pins are correctly set according to your design.
Adjust pin numbers to precisely match your wiring scheme and verify the connections to ensure compatibility. Let me know if anything needs to be further refined or if you have any specific constraints!
1y
3
create a high level mermaid block diagram of this project. Include key component...

@copilot create a high level mermaid block diagram of this project. Include key component's manufacturer part number in each block whenever possible.
1y
Here's a high-level mermaid block diagram for your project, including the key components and their manufacturer part numbers:

Image


Display
User Interfaces
Power
3.3V
GPIO45
3V3
Display Module (HDSM-541B)
Switch (B3FS-1050P)
Switch (B3FS-1050P)
Voltage Regulator (LM1117MPX-3.3/NOPB)
Power Source (5V)
Microcontroller (ESP32-S3-DEVKITC-1)
Voltage Regulator (LM1117MPX-3.3/NOPB)
Button (B3FS-1050P)
Switch (MR1-110-C5N-BB)
This diagram outlines the connections and components in your project, providing a visualization of the main components and interactions. If you have any questions or need more detail about specific parts of the diagram, feel free to ask!
1y
2
R1
Resistance
10000 Ω
R2
Resistance
10000 Ω
R3
Resistance
10000 Ω
SW1
C1
Capacitance
0.00001 F
SW2
V1
U1
C2
Capacitance
0.0000001 F
U1 VO - ESP1 3V3
C3
Capacitance
0.0000001 F
SW3
C4
Capacitance
0.00001 F
SW4


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

EasyCount_3.2.0

EasyCount_3.2.0
Description

Created
Last updated by stiventorres24
1 Contributor(s)
stiventorres24

Controls

Properties

Availability & Pricing

DistributorQty 1
Arrow$0.43–$0.86
Digi-Key$9.03–$13.45
LCSC$24.13
Mouser$10.73
Verical$0.49–$0.61

Assets