• ArduinoMicro-MidiFreak

    ArduinoMicro-MidiFreak

    Arduino Micro - MIDI Controller It uses the Arduino Micro as USB midi controller. It has 1 capacitive touch octave (12 Keys), 2 rotary encoders, a button, and a proximity sensor that can be used as a mod wheel, sustain pedal or MPE. The oled screen displays the different configuration options. It can be set to any channel or C.C. so it can be used to modify other instruments behavior. The capacitive touch keys can also be used as 12 drum machine pads.

    ebarranco

    35 Comments

    21 Stars


  • ArduinoMicro-MidiFreak-PB

    ArduinoMicro-MidiFreak-PB

    Arduino Micro - MIDI Controller It uses the Arduino Micro as USB midi controller. It has 1 capacitive touch octave (12 Keys), 2 rotary encoders, a button, and a proximity sensor that can be used as a mod wheel, sustain pedal or MPE. The oled screen displays the different configuration options. It can be set to any channel or C.C. so it can be used to modify other instruments behavior. The capacitive touch keys can also be used as 12 drum machine pads.

    datnapafunk

    6 Comments

    3 Stars


  • MSP430FR6035IPZ

    MSP430FR6035IPZ

    The Texas Instruments MSP430FR604x and MSP430FR603x family comprises highly integrated ultrasonic sensing and measurement system-on-chips (SoCs) designed specifically for water and heat metering applications. The featured components, including MSP430FR6047, MSP430FR60471, MSP430FR6045, MSP430FR6037, MSP430FR60371, and MSP430FR6035, deliver best-in-class ultrasonic water flow measurement with ultra-low power consumption. These microcontrollers excel with an active mode current consumption of approximately 120 µA/MHz and a standby mode power draw as low as 450 nA with a real-time clock (RTC) enabled. Key functionalities include a high-precision differential time-of-flight (dTOF) accuracy of less than 25 ps, integrated analog front-end, programmable pulse generation (PPG), and an analog comparator. They also interface directly with standard ultrasonic sensors up to 2.5 MHz and feature up to 256KB FRAM, robust RAM options, and integrated LCD drivers for up to 264 segments. The embedded low-energy accelerator (LEA) enhances digital signal processing capabilities, making these components ideal for battery-powered metering solutions. Peripherals include multiple enhanced serial communication interfaces, high-performance ADCs, DMA controllers, and a suite of timers and encryption modules. These features combine to offer a powerful solution for high-accuracy, low-cost, and ultra-low-power metering applications.

    jbreidfjord-dev

    4 Comments

    2 Stars


  • Raspberry Pi Pico 2 Shield Template

    Raspberry Pi Pico 2 Shield Template

    This is the project template for the Raspberry Pi Pico 2, the latest addition and update to Pi Pico line up. Raspberry pi pico 2 is equipped with the RP2350, a cutting-edge, high-performance microcontroller designed with enhanced security and versatility in mind. Every element of its design has been upgraded, from the advanced CPU cores to the innovative PIO (Programmable I/O) interfacing subsystem. The Raspberry Pi Foundation has integrated a robust security architecture centered around Arm TrustZone for Cortex-M, ensuring data protection and integrity. Additionally, new low-power states and expanded package options broaden the range of applications, making the Pico 2 an ideal choice for diverse, power-sensitive projects. To learn more about what's the key differences between the original Pi Pico and the new Pi Pico 2, read our blog https://www.flux.ai/p/blog/whats-new-in-the-raspberry-pi-pico-2-a-showdown-with-the-original-raspberry-pi-pico #project-template #template #raspberry #pi #pico2 #newpico

    jharwinbarrozo

    2 Stars


  • Married Red Electromagnetic Shrinking Machine

    Married Red Electromagnetic Shrinking Machine

    The Smart Hospital Bed is designed to enhance the care and comfort of patients with limited mobility by streamlining repositioning and maintaining detailed health records. It features automated repositioning options via an intuitive control interface, along with a rotating mechanism that allows the bed to transform into a chair for better comfort and adaptability. Additionally, its health data recording system provides real-time data base record on vital signs and posture, accessible remotely by healthcare providers helps them with decision making.

    destaelias

    &

    destselias

    26 Comments

    1 Star


  • pundit.ai

    pundit.ai

    1. Overview: The Pundit pendant is a wearable AI transcription assistant. An innovative device designed to seamlessly integrate into daily activities, providing real-time transcription and note-taking capabilities. Combining advanced AI algorithms with state-of-the-art hardware components, the device offers crystal clear audio recording, durable construction, and convenient features such as cloud synchronization, weatherproofing, and a vibrant display for animations and expressions. 2. Hardware Specifications: * Rechargeable Battery: Lithium-ion battery providing up to 150 hours of continuous operation. * Construction: Durable aluminum body ensuring longevity and protection against wear and tear. * Audio Quality: High-fidelity microphone array for clear and accurate transcription, with noise cancellation technology. * Weatherproofing: Sealed construction to withstand various weather conditions, making it suitable for outdoor use. * Versatile Mounting: Equipped with a magnetic clasp for easy attachment to clothing or accessories. * Connectivity: Wi-Fi and Bluetooth connectivity for seamless data transfer and integration with other devices. * Charging: USB-C port for fast and convenient charging, with support for various power sources. * Input Microphone Array: Multiple microphones strategically placed for optimal audio capture and transcription accuracy. * Display: Colorful screen for displaying animations, expressions, and status indicators, enhancing user interaction and personalization. 3. Software Features: * Real-time Transcription: Utilizes AI algorithms for instant transcription of spoken words into text, with high accuracy. * Note-taking: Automatically creates and organizes notes based on conversations, timestamps, and contextual cues. * Audio Recording: One-touch button for initiating audio recording, with options for manual or automatic saving. * Cloud Synchronization: Syncs transcription data to the cloud for easy access and retrieval from any device. * Speech Recognition: Advanced speech recognition technology for identifying speakers and distinguishing between multiple voices. * Language Support: Multilingual support for transcription and note-taking in various languages. * Customization: User-configurable settings for adjusting transcription preferences, language models, and display animations. * Security: Encryption and authentication protocols to ensure the privacy and security of transcription data. 4. Dimensions and Weight: * Dimensions: Compact and lightweight design for comfortable wearability. * Weight: Minimal weight to prevent discomfort during prolonged use. 5. Compatibility: * Operating Systems: Compatible with iOS, Android, and other major operating systems. * Applications: Integration with popular productivity and communication apps for seamless workflow management. 6. Warranty and Support: * Warranty: Manufacturer's warranty covering defects in materials and workmanship. * Support: Dedicated customer support for technical assistance, troubleshooting, and software updates. 7. Target Market: * Professionals: Ideal for professionals in various industries, including journalists, researchers, students, and business professionals. * Outdoor Enthusiasts: Suitable for outdoor activities such as hiking, camping, and fieldwork where reliable transcription and note-taking are essential. * Everyday Users: Provides convenience and efficiency for everyday tasks, such as meetings, lectures, and personal reminders. 8. Conclusion: The Wearable AI Transcription Assistant sets a new standard for wearable technology, offering unmatched transcription and note-taking capabilities in a compact and durable package. With its advanced features, seamless connectivity, vibrant display, and user-friendly design, it is poised to revolutionize how we capture and manage information in our daily lives while adding a touch of personality and fun with customizable animations and expressions.

    collinsemasi

    26 Comments

    1 Star


  • On Air R2 - Thread Enabled

    On Air R2 - Thread Enabled

    R2 w Thread changes: -Moving to Letter Modules for ease of design -Adding MGM210L for Matter on Thread On/Off and intensity control -Shifted A and R letters closer to fix Kerning -Optional: Add unpopulated AA Battery Holder for battery option R1 changes: -Changed LED part to Red LEDs -adjusted resistor value of buck converter -Changed source for USB-C Connector -Removed exposed soldermask on buck converter with negative soldermask expansion -Order with black soldermask Modified by markwu2001: - Adjustable Brightness, - 85-90% Drive Efficiency - <5W Operation (Can use 5V 1A Plug) This project can be purchased from LCSC Original Description: Daddy's second circuit board. A sign to let my wife know when I'm on a call. Activates with a slide switch and is powered by USB-C. #template #arduino-matter

    markwuflux

    11 Comments

    1 Star


  • TPSM64404RCHR

    TPSM64404RCHR

    The TPSM64404, TPSM64406, and TPSM64406E from Texas Instruments are highly integrated synchronous buck DC/DC power modules designed for applications requiring high power density and low EMI. These modules feature integrated MOSFETs, inductors, and controllers, supporting a wide input voltage range of 3V to 36V and adjustable output voltages from 0.8V to 16V. The devices are available in a compact 6.5mm × 7.0mm × 2mm overmolded package and are capable of operating within a junction temperature range of -40°C to 125°C, with the TPSM64406E extending to -55°C. The TPSM6440xx series offers ultra-high efficiency, achieving peak efficiencies greater than 93.5%, and includes an external bias option for improved performance. The modules are designed to minimize conducted and radiated EMI, meeting CISPR 11 and 32 Class B emissions standards. They support dual output or multiphase single output configurations, making them suitable for test and measurement, aerospace and defense, factory automation, and control applications. Key features include precision enable input, open-drain PGOOD indicator, overcurrent protection, thermal shutdown, and a versatile configuration for scalable power supplies.

    leemind

    &

    claudie205394
    111kmw
    cionjay

    5 Comments

    1 Star


  • BLM02AX121SN1_CLONE

    BLM02AX121SN1_CLONE

    The BLM02AX121SN1# is a chip ferrite bead manufactured by Murata, designed to function as a resistor at noise frequencies, thereby minimizing resonance and maintaining signal integrity. This surface-mount device (SMD) features a compact size of 0.4mm x 0.2mm, making it ideal for noise suppression in small electronic equipment, such as PA modules for cellular phones. The component operates effectively across a wide frequency range (30MHz to several hundred MHz) without requiring a ground connection, making it suitable for circuits without stable ground lines. The BLM02AX121SN1# offers a rated current of 250mA at 125°C, a maximum DC resistance of 0.50Ω, and an impedance of 1200Ω at 100MHz with a tolerance of ±25%. It is available in two packaging options: bulk (bag) with a standard packing quantity of 1000 units and 180mm paper tape with 20000 units. The device is compliant with RoHS and REACH standards, ensuring its suitability for consumer and certain medical and industrial applications.

    sumprishar

    1 Comment

    1 Star


  • Realistic Brown Battle Mech

    Realistic Brown Battle Mech

    Nice — you can do a clean pulse + latch using a single quad Schmitt-NAND chip: 74HC132 (or 74LVC132 for 3.3 V systems). The HC132 contains four 2-input NAND gates with Schmitt inputs so you can both clean a noisy SYN480R DATA line and build an SR latch (NAND SR is active-LOW) inside one package. Only a few passives and a driver transistor are needed. Below is a ready-to-build recipe (parts, wiring, explanation, tuning tips, and an ASCII schematic) — no extra logic ICs required. Parts (per latch) 1 × 74HC132 (quad 2-input NAND with Schmitt inputs). If your system is 3.3 V use 74LVC132 / 74HC132 rated for 3.3 V. Rin = 47 kΩ (input series) Cfilter = 10 nF (input RC to ground) — tweak for debounce/clean time Rpulldown = 100 kΩ (pull-down at input node, optional) Rpullup = 100 kΩ (pull-up for active-LOW R input so reset is idle HIGH) Rbase = 10 kΩ, Q = 2N2222 (NPN) or small N-MOSFET (2N7002) to drive your load Diode for relay flyback (1N4001) if you drive a coil Optional small cap 0.1 µF decoupling at VCC of IC Concept / how it works (short) Use Gate1 (G1) of 74HC132 as a Schmitt inverter by tying its two inputs together and feeding a small RC filter from SYN480R.DATA. This removes HF noise and provides a clean logic transition. Because it's a NAND with tied inputs its function becomes an inverter with Schmitt behavior. Use G2 & G3 as the cross-coupled NAND pair forming an SR latch (active-LOW inputs S̄ and R̄). A low on S̄ sets Q = HIGH. A low on R̄ resets Q = LOW. Wire the cleaned/inverted output of G1 to S̄. A valid received pulse (DATA high) produces a clean LOW on S̄ (because G1 inverts), setting the latch reliably even if the pulse is brief. R̄ is your reset input (pushbutton, HT12D VT, MCU line, etc.) — idle pulled HIGH. Q drives an NPN/MOSFET to switch your load (relay, LED, etc.). Recommended wiring (pin mapping, assume one chip; use datasheet pin numbers) I’ll refer to the 4 gates as G1, G2, G3, G4. Use G4 optionally for additional conditioning or to build a toggler later. SYN480R.DATA --- Rin (47k) ---+--- Node A ---||--- Cfilter (10nF) --- GND | Rpulldown (100k) --- GND (optional, keeps node low) Node A -> both inputs of G1 (tie inputs A and B of Gate1 together) G1 output -> S̄ (S_bar) (input1 of Gate2) Gate2 (G2): inputs = S̄ and Q̄ -> output = Q Gate3 (G3): inputs = R̄ and Q -> output = Q̄ R̄ --- Rpullup (100k) --- VCC (reset is idle HIGH; pull low to reset) (optional) R̄ can be wired to a reset pushbutton to GND or to an MCU pin Q -> Rbase (10k) -> base of 2N2222 (emitter GND; collector to one side of relay coil) Other side of relay coil -> +V (appropriate coil voltage) Diode across coil If you prefer MOSFET low side switching: Q -> gate resistor 100Ω -> gate of 2N7002 2N7002 source -> GND ; drain -> relay coil low side

    prishvin

    1 Star


  • Brainstorm a new project with AI [Example]

    Brainstorm a new project with AI [Example]

    make this for me now # Device Summary & Specification Sheet ## 1. Overview A rugged, Arduino-Uno-and-Raspberry-Pi-style single-board micro-PC featuring: - Smartphone-class CPU (Snapdragon 990) - USB-C Power Delivery + 4×AA alkaline backup + ambient-light harvester - On-board Arduino-Uno-compatible ATmega328P - External NVMe SSD via USB3 bridge & optional Thunderbolt 3 eGPU support - 5× USB 3.0 ports, HDMI in/out, Gigabit Ethernet & SFP fiber, Wi-Fi, Bluetooth, LoRa - 0.96″ OLED status display, 3.5 mm audio jack with codec --- ## 2. Key Specifications | Category | Specification | |--------------------|-------------------------------------------------------------------------------| | CPU | Snapdragon 990, octa-core up to 2.84 GHz | | Memory | 6 GB LPDDR4x DRAM | | Storage Interface | PCIe Gen3 ×4 → M.2 NVMe + USB 3.1 Gen1 bridge | | MCU | ATmega328P (Arduino-Uno-compatible) | | Power Input | USB-C PD up to 20 V/5 A; 4×AA alkaline backup; ambient-light photodiode boost | | Power Rails | 12 V, 5 V, 3.3 V, 1.8 V, 1.2 V via buck/buck-boost regulators | | USB Hub | 5× USB 3.0 downstream ports | | Display | 0.96″ 128×64 OLED via I²C/SPI | | Networking | 1 × Gigabit RJ45; 1 × SFP fiber; Wi-Fi 802.11ac + Bluetooth; LoRa SX1276 | | Video I/O | HDMI 2.0 input (RX) & output (TX) | | Audio | 3.5 mm jack + TLV320AIC3101 codec; Bluetooth audio | | Form Factor | Raspberry Pi–style header + Arduino-Uno shield headers; 4× standoff mounts | --- ## 3. Complete Parts List | Part | Function | Qty | |------------------------------------------------------------------------------------------------|-----------------------------------------------|-----| | [Snapdragon 990](https://www.flux.ai/search?type=components&q=Snapdragon%20990) | Main application CPU | 1 | | [LPDDR4x DRAM](https://www.flux.ai/search?type=components&q=LPDDR4x%20DRAM) | System memory | 1 | | [eMMC 64GB](https://www.flux.ai/search?type=components&q=eMMC%2064GB) | On-board storage | 1 | | [M.2 NVMe Connector](https://www.flux.ai/search?type=components&q=M.2%20NVMe%20Connector) | External SSD interface | 1 | | [JMS583](https://www.flux.ai/search?type=components&q=JMS583) | PCIe→USB 3.1 bridge for NVMe | 1 | | [Titan Ridge](https://www.flux.ai/search?type=components&q=Titan%20Ridge) | Thunderbolt 3/eGPU controller | 1 | | [STUSB4500](https://www.flux.ai/search?type=components&q=STUSB4500) | USB-C Power-Delivery controller | 1 | | [LTC4412](https://www.flux.ai/search?type=components&q=LTC4412) | Ideal-diode OR-ing | 1 | | [LTC3108](https://www.flux.ai/search?type=components&q=LTC3108) | Ambient-light (solar) energy harvester | 1 | | [Battery Holder 4×AA](https://www.flux.ai/search?type=components&q=Battery%20Holder%204xAA) | Alkaline backup power | 1 | | [TPS53318](https://www.flux.ai/search?type=components&q=TPS53318) | 6 V→5 V synchronous buck regulator | 1 | | [MCP1700-3302E/TO](https://www.flux.ai/search?type=components&q=MCP1700-3302E/TO) | 6 V→3.3 V LDO | 1 | | [TPS63060](https://www.flux.ai/search?type=components&q=TPS63060) | Buck-boost for 12 V rail (eGPU power) | 1 | | [ATmega328P](https://www.flux.ai/search?type=components&q=ATmega328P) | Arduino-Uno microcontroller | 1 | | [ESP32-WROOM-32](https://www.flux.ai/search?type=components&q=ESP32-WROOM-32) | Wi-Fi + Bluetooth co-processor | 1 | | [SX1276](https://www.flux.ai/search?type=components&q=SX1276) | LoRa transceiver | 1 | | [TUSB8041](https://www.flux.ai/search?type=components&q=TUSB8041) | 5-port USB 3.0 hub IC | 1 | | [Ethernet PHY](https://www.flux.ai/search?type=components&q=Ethernet%20PHY) | Gigabit Ethernet physical transceiver | 1 | | [SFP Cage](https://www.flux.ai/search?type=components&q=SFP%20Cage) | Fiber-optic SFP module connector | 1 | | [TDA19978](https://www.flux.ai/search?type=components&q=TDA19978) | HDMI 2.0 receiver (input) | 1 | | [TFP410](https://www.flux.ai/search?type=components&q=TFP410) | HDMI 2.0 transmitter (output) | 1 | | [TLV320AIC3101](https://www.flux.ai/search?type=components&q=TLV320AIC3101) | Audio codec for 3.5 mm jack & Bluetooth audio | 1 | | [Audio Jack 3.5mm](https://www.flux.ai/search?type=components&q=Audio%20Jack%203.5mm) | Headphone/mic port | 1 | | [SSD1306 OLED](https://www.flux.ai/search?type=components&q=SSD1306%20OLED) | Status display | 1 | --- ## 4. High-Level Design & Implementation Steps 1. **Schematic Creation** - Section off blocks: CPU + memory, power-supply, NVMe/USB bridge, MCU, wireless, USB hub, video, audio, I/O headers. - Place all parts from the list and wire per respective datasheet reference circuits. 2. **Power System** - Implement USB-C PD with STUSB4500 → buck/buck-boost & LDO rails. - Add LTC4412 to OR-ing battery pack into 6 V bus. - Include LTC3108 harvest input to 6 V bus (no recharge to AA). - Add decoupling & bulk caps per regulator datasheets; PTC fuses & ESD diodes on inputs. 3. **SoC & High-Speed Interfaces** - Break out Snapdragon 990 BGA with DDR4 routing (point-to-point). - Route PCIe Gen3 lanes to M.2 slot via JMS583 and to Titan Ridge for TB/eGPU. - Follow high-speed layout guidelines: impedance, length matching, EMI filters. 4. **MCU & Expansion Headers** - Place ATmega328P with UNO-style 2.54 mm headers; add ISP 6-pin, I²C pull-ups, reset circuit. 5. **Connectivity Blocks** - USB hub: TUSB8041 + ESD + chokes → five USB-A 3.0 ports. - Ethernet: RJ45 + magnetics + PHY; SFP cage + PHY/SFP interface. - Wireless: ESP32 module pad + SX1276 + antenna matching; program pads. 6. **Video & Audio** - HDMI RX (TDA19978) & TX (TFP410) blocks with TMDS ESD & termination. - Audio codec + 3.5 mm jack; route differential audio lines; add ESD. 7. **Display & Indicators** - SSD1306 OLED on I²C; add pull-ups & backlight power if needed. - LEDs for power, charge, status. 8. **PCB Layout & Mechanical** - Follow Raspberry Pi 2×20 header footprint & UNO shield hole pattern. - Add reinforcement for rugged use; standoffs at corners. - Define 4-layer stackup: • Top: signal • L2: GND • L3: PWR • Bottom: signal 9. **DRC/ERC Reviews** - Run ERC for decoupling, pull-ups, power nets. - Run DRC for high-speed clearance, differential pairs, via aspect ratios. 10. **Fabrication & Testing** - Export Gerbers, IPC-2581, BOM. - Prototype assembly; verify power sequencing, rails, interfaces. - Functional tests: USB-C PD negotiation, NVMe throughput, eGPU over TB3, wireless comm, audio, OLED. --- This spec sheet and part list should guide your Flux schematic and PCB layout workflow through to fabrication and validation. Let me know if you’d like to deep-dive into any specific block or review datasheet details next!

    &

    1 Star


  • Raspberry Pi Pico 2 Shield Template 0da4

    Raspberry Pi Pico 2 Shield Template 0da4

    This is the project template for the Raspberry Pi Pico 2, the latest addition and update to Pi Pico line up. Raspberry pi pico 2 is equipped with the RP2350, a cutting-edge, high-performance microcontroller designed with enhanced security and versatility in mind. Every element of its design has been upgraded, from the advanced CPU cores to the innovative PIO (Programmable I/O) interfacing subsystem. The Raspberry Pi Foundation has integrated a robust security architecture centered around Arm TrustZone for Cortex-M, ensuring data protection and integrity. Additionally, new low-power states and expanded package options broaden the range of applications, making the Pico 2 an ideal choice for diverse, power-sensitive projects. To learn more about what's the key differences between the original Pi Pico and the new Pi Pico 2, read our blog https://www.flux.ai/p/blog/whats-new-in-the-raspberry-pi-pico-2-a-showdown-with-the-original-raspberry-pi-pico #project-template #template #raspberry #pi #pico2 #newpico

    1 Star


  • GPS Breakout - NEO-M9N, Chip Antenna (Qwiic)

    GPS Breakout - NEO-M9N, Chip Antenna (Qwiic)

    NEO-M9N GPS Breakout with on-board chip antenna is a high quality GPS board with equally impressive configuration options. The NEO-M9N module is a 92-channel u-blox M9 engine GNSS receiver, meaning it can receive signals from the GPS, GLONASS, Galileo, and BeiDou constellations witn ~1.5 meter accuracy. This breakout supports concurrent reception of four GNSS. This maximizes position accuracy in challenging conditions, increasing precision and decreases lock time; and thanks to the onboard rechargeable battery, you'll have backup power enabling the GPS to get a hot lock within seconds! Additionally, this u-blox receiver supports I2C (u-blox calls this Display Data Channel) which made it perfect for the Qwiic compatibility so we don't have to use up our precious UART ports. Utilizing our handy Qwiic system, no soldering is required to connect it to the rest of your system. However, we still have broken out 0.1"-spaced pins in case you prefer to use a breadboard.

    1 Star


  • TUSB8041IRGCR

    TUSB8041IRGCR

    The TUSB8041 by Texas Instruments is a highly integrated four-port USB 3.0 hub controller designed to facilitate high-speed data transfers and power management in computer systems, docking stations, monitors, and set-top boxes. This component offers simultaneous SuperSpeed USB (5 Gbps), high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) data connections, ensuring backward compatibility with USB 2.0 and USB 1.x devices. Key features include multi-transaction translation with four transaction translators, asynchronous endpoint buffers for improved data management, and comprehensive battery charging support compliant with various standards including CDP, DCP, and Chinese Telecommunications Industry Standard YD/T 1591-2009. Flexible power management options are available, catering to both per-port and ganged power control configurations, alongside over-current protection mechanisms. The device also supports custom configurations via OTP ROM, serial EEPROM, or I2C/SMBus interfaces, enabling customization for vendor IDs, product IDs, port specifics, and string descriptors. Ease of integration is further enhanced with the ability for on-board and in-system OTP/EEPROM programming via the USB 2.0 upstream port, and the device requires no special drivers, operating seamlessly with any OS that supports USB. Packaged in a compact 64-pin QFN format, the TUSB8041 is offered in both commercial (0℃ to 70℃) and industrial temperature (-40℃ to 85℃) ranges, ensuring robust performance across diverse environmental conditions. With a single clock input requirement and comprehensive system resource support, the TUSB8041 is ideal for developers aiming to implement high-performance and reliable USB hubs in their designs.

    jbreidfjord-dev

    1 Star


  • Regulators Option

    Regulators Option

    Welcome to your new project. Imagine what you can build here.

    jharwinbarrozo

    1 Comment


  • On Air R2 Demo

    On Air R2 Demo

    R2 changes: -Moving to Letter Modules for ease of design -Adding ESP32 for WiFi On/Off and intensity control -Optional: Add unpopulated AA Battery Holder for battery option R1 changes: -Changed LED part to Red LEDs -adjusted resistor value of buck converter -Changed source for USB-C Connector -Removed exposed soldermask on buck converter with negative soldermask expansion -Order with black soldermask Modified by markwu2001: - Adjustable Brightness, - 85-90% Drive Efficiency - <5W Operation (Can use 5V 1A Plug) This project can be purchased from LCSC Original Description: Daddy's second circuit board. A sign to let my wife know when I'm on a call. Activates with a slide switch and is powered by USB-C. #template

    markwuflux

    53 Comments


  • LR1121

    LR1121

    The component under discussion is designed for advanced electronic systems, targeting applications that require reliable connectivity and precise data acquisition. Engineered by SEMTECH, a leader in high-performance analog and mixed-signal semiconductors and advanced algorithms, this module showcases its prowess in the realm of wireless technology. It incorporates the LR112x series chips, specifically mentioning the LR1120 and LR1121, which are notable for their low power consumption and robustness in communication capabilities. These chips cater to a variety of frequency bands, with explicit mentions of R915 and R868, indicating their suitability for a broad range of geographical regions and regulatory requirements. This module is particularly designed with an eye towards innovation in the domain of Internet of Things (IoT) applications, offering features that ensure seamless integration into existing technology with an emphasis on ease of deployment and operational efficiency. Key features highlighted include multiple onboard antennae options such as ANT_GNSS and ANT_WIFI, ensuring comprehensive connectivity solutions for different environmental and application requirements. Also notable is the mention of a VOD_RADIO and the inclusion of interfaces like SPI and BUSY signaling, underscoring the component's flexibility in system integration and communication protocol support. Furthermore, SEMTECH references specific considerations for design and regulatory compliance, indicating the component's targeted use in professional grade equipment and scenarios. The datasheet also hints at an evaluation-focused approach, with designations like "For evaluation only" and remarks on FCC approval status, suggesting that this component is positioned for development and testing in cutting-edge wireless applications. This focus on flexibility, regulatory compliance, and advanced connectivity options positions SEMTECH's component as a crucial asset for designers and engineers looking to innovate in the IoT and wireless communication sectors.

    &

    24 Comments


  • Playground: Biskuit AI

    Playground: Biskuit AI

    1. Overview: The Biskuit pendant is a wearable AI transcription assistant. An innovative device designed to seamlessly integrate into daily activities, providing real-time transcription and note-taking capabilities. Combining advanced AI algorithms with state-of-the-art hardware components, the device offers crystal clear audio recording, durable construction, and convenient features such as cloud synchronization, weatherproofing, and a vibrant display for animations and expressions. 2. Hardware Specifications: * Rechargeable Battery: Lithium-ion battery providing up to 150 hours of continuous operation. * Construction: Durable aluminum body ensuring longevity and protection against wear and tear. * Audio Quality: High-fidelity microphone array for clear and accurate transcription, with noise cancellation technology. * Weatherproofing: Sealed construction to withstand various weather conditions, making it suitable for outdoor use. * Versatile Mounting: Equipped with a magnetic clasp for easy attachment to clothing or accessories. * Connectivity: Wi-Fi and Bluetooth connectivity for seamless data transfer and integration with other devices. * Charging: USB-C port for fast and convenient charging, with support for various power sources. * Input Microphone Array: Multiple microphones strategically placed for optimal audio capture and transcription accuracy. * Display: Colorful screen for displaying animations, expressions, and status indicators, enhancing user interaction and personalization. 3. Software Features: * Real-time Transcription: Utilizes AI algorithms for instant transcription of spoken words into text, with high accuracy. * Note-taking: Automatically creates and organizes notes based on conversations, timestamps, and contextual cues. * Audio Recording: One-touch button for initiating audio recording, with options for manual or automatic saving. * Cloud Synchronization: Syncs transcription data to the cloud for easy access and retrieval from any device. * Speech Recognition: Advanced speech recognition technology for identifying speakers and distinguishing between multiple voices. * Language Support: Multilingual support for transcription and note-taking in various languages. * Customization: User-configurable settings for adjusting transcription preferences, language models, and display animations. * Security: Encryption and authentication protocols to ensure the privacy and security of transcription data. 4. Dimensions and Weight: * Dimensions: Compact and lightweight design for comfortable wearability. * Weight: Minimal weight to prevent discomfort during prolonged use. 5. Compatibility: * Operating Systems: Compatible with iOS, Android, and other major operating systems. * Applications: Integration with popular productivity and communication apps for seamless workflow management. 6. Warranty and Support: * Warranty: Manufacturer's warranty covering defects in materials and workmanship. * Support: Dedicated customer support for technical assistance, troubleshooting, and software updates. 7. Target Market: * Professionals: Ideal for professionals in various industries, including journalists, researchers, students, and business professionals. * Outdoor Enthusiasts: Suitable for outdoor activities such as hiking, camping, and fieldwork where reliable transcription and note-taking are essential. * Everyday Users: Provides convenience and efficiency for everyday tasks, such as meetings, lectures, and personal reminders. 8. Conclusion: The Wearable AI Transcription Assistant sets a new standard for wearable technology, offering unmatched transcription and note-taking capabilities in a compact and durable package. With its advanced features, seamless connectivity, vibrant display, and user-friendly design, it is poised to revolutionize how we capture and manage information in our daily lives while adding a touch of personality and fun with customizable animations and expressions.

    collinsemasi

    20 Comments


  • Biskuit AI 6254

    Biskuit AI 6254

    1. Overview: The Biskuit pendant is a wearable AI transcription assistant. An innovative device designed to seamlessly integrate into daily activities, providing real-time transcription and note-taking capabilities. Combining advanced AI algorithms with state-of-the-art hardware components, the device offers crystal clear audio recording, durable construction, and convenient features such as cloud synchronization, weatherproofing, and a vibrant display for animations and expressions. 2. Hardware Specifications: * Rechargeable Battery: Lithium-ion battery providing up to 150 hours of continuous operation. * Construction: Durable aluminum body ensuring longevity and protection against wear and tear. * Audio Quality: High-fidelity microphone array for clear and accurate transcription, with noise cancellation technology. * Weatherproofing: Sealed construction to withstand various weather conditions, making it suitable for outdoor use. * Versatile Mounting: Equipped with a magnetic clasp for easy attachment to clothing or accessories. * Connectivity: Wi-Fi and Bluetooth connectivity for seamless data transfer and integration with other devices. * Charging: USB-C port for fast and convenient charging, with support for various power sources. * Input Microphone Array: Multiple microphones strategically placed for optimal audio capture and transcription accuracy. * Display: Colorful screen for displaying animations, expressions, and status indicators, enhancing user interaction and personalization. 3. Software Features: * Real-time Transcription: Utilizes AI algorithms for instant transcription of spoken words into text, with high accuracy. * Note-taking: Automatically creates and organizes notes based on conversations, timestamps, and contextual cues. * Audio Recording: One-touch button for initiating audio recording, with options for manual or automatic saving. * Cloud Synchronization: Syncs transcription data to the cloud for easy access and retrieval from any device. * Speech Recognition: Advanced speech recognition technology for identifying speakers and distinguishing between multiple voices. * Language Support: Multilingual support for transcription and note-taking in various languages. * Customization: User-configurable settings for adjusting transcription preferences, language models, and display animations. * Security: Encryption and authentication protocols to ensure the privacy and security of transcription data. 4. Dimensions and Weight: * Dimensions: Compact and lightweight design for comfortable wearability. * Weight: Minimal weight to prevent discomfort during prolonged use. 5. Compatibility: * Operating Systems: Compatible with iOS, Android, and other major operating systems. * Applications: Integration with popular productivity and communication apps for seamless workflow management. 6. Warranty and Support: * Warranty: Manufacturer's warranty covering defects in materials and workmanship. * Support: Dedicated customer support for technical assistance, troubleshooting, and software updates. 7. Target Market: * Professionals: Ideal for professionals in various industries, including journalists, researchers, students, and business professionals. * Outdoor Enthusiasts: Suitable for outdoor activities such as hiking, camping, and fieldwork where reliable transcription and note-taking are essential. * Everyday Users: Provides convenience and efficiency for everyday tasks, such as meetings, lectures, and personal reminders. 8. Conclusion: The Wearable AI Transcription Assistant sets a new standard for wearable technology, offering unmatched transcription and note-taking capabilities in a compact and durable package. With its advanced features, seamless connectivity, vibrant display, and user-friendly design, it is poised to revolutionize how we capture and manage information in our daily lives while adding a touch of personality and fun with customizable animations and expressions.

    &

    4 Comments


  • On Air R2 Demo g6fL

    On Air R2 Demo g6fL

    R2 changes: -Moving to Letter Modules for ease of design -Adding ESP32 for WiFi On/Off and intensity control -Optional: Add unpopulated AA Battery Holder for battery option R1 changes: -Changed LED part to Red LEDs -adjusted resistor value of buck converter -Changed source for USB-C Connector -Removed exposed soldermask on buck converter with negative soldermask expansion -Order with black soldermask Modified by markwu2001: - Adjustable Brightness, - 85-90% Drive Efficiency - <5W Operation (Can use 5V 1A Plug) This project can be purchased from LCSC Original Description: Daddy's second circuit board. A sign to let my wife know when I'm on a call. Activates with a slide switch and is powered by USB-C. #template

    2 Comments


  • RP2350B

    RP2350B

    The RP2350, developed by Raspberry Pi Ltd, is a high-performance microcontroller designed to cater to a broad range of applications requiring efficient power management, advanced security features, and versatile IO options. This microcontroller stands out with its dual-core architecture, featuring either Cortex-M33 or Hazard3 processors operating at up to 150 MHz, ensuring robust performance for complex applications. It boasts a substantial 520 KB of on-chip SRAM distributed across 10 independent banks, enhancing parallel data processing capabilities. Additionally, the RP2350 supports up to 16 MB of external QSPI flash/PSRAM for extensive program and data storage, further expandable via an optional second chip-select. A notable feature of the RP2350 is its integrated on-chip switched-mode power supply, designed to generate core voltage efficiently, complemented by a low-quiescent-current LDO mode for reduced power consumption in sleep states. Security is a paramount feature of the RP2350, offering options for boot signing with key fingerprint in OTP, hardware mitigations against fault injection attacks, and a hardware SHA-256 accelerator for cryptographic operations. The microcontroller is also equipped with a comprehensive set of peripherals, including USB 1.1 controller and PHY, multiple UARTs, SPI, and I2C controllers, 24 PWM channels, and 12 programmable IO (PIO) state machines, providing extensive interface capabilities. The RP2350 is available in QFN-60 and QFN-80 packages, with or without flash-in-package options, catering to various design requirements and application needs.

    1 Comment


  • Raspberry Pi Compute Module 5 wwRk

    Raspberry Pi Compute Module 5 wwRk

    Compute Module 5 is a powerful and scalable system on module with a 64-bit Arm processor @ 2.4GHz, an I/O controller, video and PCIe interfaces, and a range of wireless, SDRAM and eMMC options. raspberry pi5 #rpi #pi

    1 Comment


  • On Air R2 Demo

    On Air R2 Demo

    R2 changes: -Moving to Letter Modules for ease of design -Adding ESP32 for WiFi On/Off and intensity control -Optional: Add unpopulated AA Battery Holder for battery option R1 changes: -Changed LED part to Red LEDs -adjusted resistor value of buck converter -Changed source for USB-C Connector -Removed exposed soldermask on buck converter with negative soldermask expansion -Order with black soldermask Modified by markwu2001: - Adjustable Brightness, - 85-90% Drive Efficiency - <5W Operation (Can use 5V 1A Plug) This project can be purchased from LCSC Original Description: Daddy's second circuit board. A sign to let my wife know when I'm on a call. Activates with a slide switch and is powered by USB-C. #template

    1 Comment


  • On Air R2 - Thread Enabled

    On Air R2 - Thread Enabled

    R2 w Thread changes: -Moving to Letter Modules for ease of design -Adding MGM210L for Matter on Thread On/Off and intensity control -Shifted A and R letters closer to fix Kerning -Optional: Add unpopulated AA Battery Holder for battery option R1 changes: -Changed LED part to Red LEDs -adjusted resistor value of buck converter -Changed source for USB-C Connector -Removed exposed soldermask on buck converter with negative soldermask expansion -Order with black soldermask Modified by markwu2001: - Adjustable Brightness, - 85-90% Drive Efficiency - <5W Operation (Can use 5V 1A Plug) This project can be purchased from LCSC Original Description: Daddy's second circuit board. A sign to let my wife know when I'm on a call. Activates with a slide switch and is powered by USB-C. #template #arduino-matter

    1 Comment


  • [QA] Unique PCB

    [QA] Unique PCB

    Arduino Micro - MIDI Controller It uses the Arduino Micro as USB midi controller. It has 1 capacitive touch octave (12 Keys), 2 rotary encoders, a button, and a proximity sensor that can be used as a mod wheel, sustain pedal or MPE. The oled screen displays the different configuration options. It can be set to any channel or C.C. so it can be used to modify other instruments behavior. The capacitive touch keys can also be used as 12 drum machine pads.

    1 Comment


  • PAM8610TR 9dA5 6b24

    PAM8610TR 9dA5 6b24

    The PAM8610, manufactured by Power Analog Microelectronics, is a high-performance, 10W (per channel) stereo class-D audio amplifier featuring DC volume control. This component is designed to deliver low THD+N (0.1%), low EMI, and high efficiency (>90%), making it ideal for high-quality sound reproduction in a variety of applications such as flat monitor/LCD TVs, multi-media speaker systems, DVD players, game machines, boomboxes, and musical instruments. Operating off a 7V to 15V supply, the PAM8610 distinguishes itself with its 32-step DC volume control ranging from -75dB to 32dB, shutdown/mute/fade functions, and comprehensive protection against overcurrent, thermal, and short-circuit conditions. Its low quiescent current, pop noise suppression, and minimal external component requirement further enhance its appeal for compact and efficient audio solutions. The PAM8610 is available in a compact 40-pin QFN 6mm*6mm package, ensuring a small footprint for space-constrained applications. Compliance with RoHS standards underscores its environmental consideration. With its advanced features and high integration level, the PAM8610 offers a compelling option for designers seeking to incorporate robust audio amplification with fine-grained volume control in their electronic projects.

    1 Comment


  • [QA] Unique PCB

    [QA] Unique PCB

    Arduino Micro - MIDI Controller It uses the Arduino Micro as USB midi controller. It has 1 capacitive touch octave (12 Keys), 2 rotary encoders, a button, and a proximity sensor that can be used as a mod wheel, sustain pedal or MPE. The oled screen displays the different configuration options. It can be set to any channel or C.C. so it can be used to modify other instruments behavior. The capacitive touch keys can also be used as 12 drum machine pads.

    1 Comment


  • Active Three-Way Crossover on NE5532

    Active Three-Way Crossover on NE5532

    TECHNICAL ASSIGNMENT AND DESIGN GUIDE Active Three-Way Crossover on NE5532 Powered by AM4T-4815DZ and Amplifiers TPA3255 (Updated Version) 1. GENERAL PURPOSE OF THE DEVICE The goal of the development is to create an active three-way audio crossover for one channel of a loudspeaker system, working with the following drivers: LF: VISATON W250 MF: VISATON MR130 HF: Morel MDT-12 Each frequency range is amplified by a separate power amplifier: LF: TPA3255 in PBTL mode (mono) MF + HF: second TPA3255 in stereo mode (one channel for MF, the other for HF) The crossover accepts a single linear audio signal (mono) and divides it into three frequency bands: Range Frequency Range LF 0 – 650 Hz MF 650 – 2500 Hz HF 2500 Hz and above Filter type: Linkwitz–Riley 4th order (24 dB/oct) at each crossover point (650 Hz and 2500 Hz). The crossover must provide: minimal self-noise; no audible distortion in the audible range; stable operation with NE5532 at ±15 V power supply; easy adjustment of the level for each band, as well as the overall level (via the input buffer). 2. FILTER TYPES AND BASIC OPERATING PRINCIPLES Each filter is implemented as two cascaded Sallen–Key 2nd order (Butterworth) stages, resulting in a final 4th order LR4 filter. Topology: non-inverting Sallen–Key, optimal for NE5532. For all stages: Cascade gain: K ≈ 1.586 This provides a Q factor of 0.707 (Butterworth), which in combination gives a Linkwitz–Riley 4th order. 3. COMPONENT VALUES FOR FILTERS 3.1 Universal Parameters RC chain capacitors: 10 nF, film capacitors, tolerance ≤ 5% Resistors: metal-film, tolerance ≤ 1% The gain of each stage is set by feedback resistors: Rf = 5.9 kΩ Rg = 10 kΩ K ≈ 1 + (Rf / Rg) ≈ 1.59 The circuit should allow for the installation of a small capacitor (10–47 pF) in parallel with Rf (footprint provided) for possible stability correction (not mandatory to install in the first revision). 3.2 650 Hz Filters (Low-frequency boundary for MF) These are used for the division between W250 and MR130. LP650 — Low-frequency Filter 2nd Order R1 = 24.9 kΩ R2 = 24.9 kΩ C1 = 10 nF C2 = 10 nF Two stages: LP650 #1 and LP650 #2. HP650 — MF High-frequency Filter 2nd Order Same values: R1 = 24.9 kΩ R2 = 24.9 kΩ C1 = 10 nF C2 = 10 nF Two stages: HP650 #1 and HP650 #2. 3.3 2500 Hz Filters (Upper boundary for MF) These are used for the division between MR130 → MDT-12. LP2500 — High-pass MF Filter R1 = 6.34 kΩ R2 = 6.34 kΩ C1 = 10 nF C2 = 10 nF Two stages: LP2500 #1 and LP2500 #2. HP2500 — High-frequency Filter Same values: R1 = 6.34 kΩ R2 = 6.34 kΩ C1 = 10 nF C2 = 10 nF Two stages: HP2500 #1 and HP2500 #2. 4. OPERATIONAL AMPLIFIERS The NE5532 (dual op-amp, DIP-8 or SOIC-8) is used. A minimum of 4 packages (8 channels) for filters: NE5532 Function U1A, U1B LP650 #1, LP650 #2 (LF) U2A, U2B HP650 #1, HP650 #2 (Lower MF cut-off) U3A, U3B LP2500 #1, LP2500 #2 (Upper MF cut-off) U4A, U4B HP2500 #1, HP2500 #2 (HF) Additionally: U5 — input buffer / preamplifier (both channels) If necessary, an additional NE5532 (U6) for the balanced input (see section 6.2). All NE5532 should have local decoupling for power supply (see section 5.1). 5. CROSSOVER POWER SUPPLY AM4T-4815DZ DC/DC module is used: Input: 36–72 V, connected to the 48 V power supply for TPA3255 amplifiers. Output: +15 V / –15 V, up to 0.133 A per side. Maximum output capacitance: ≤ 47 µF per side (according to the datasheet). 5.1 Power Filtering Input (48 V): RC variant (simpler, acceptable for the first revision): R = 1–2 Ω / 1–2 W C = 47–100 µF (for 63 V or higher) LC variant (preferred for improved noise immunity): L = 10–22 µH C = 47–100 µF The developer may implement LC if confident in choosing the inductance and its parameters. Output +15 V and –15 V (general filtering): Electrolytic capacitor 10–22 µF per side 100 nF (X7R) per side to GND Local decoupling for NE5532 (REQUIRED): For each NE5532 package: 100 nF between +15 V and GND 100 nF between –15 V and GND Place as close as possible to the op-amp power pins (short traces). Additional local filtering for power lines: For each NE5532, decouple from the ±15 V main rails: Either 4.7–10 Ω resistor in series with +15 V and –15 V, Or ferrite bead in each rail. After this component, place local capacitors (100 nF + 1–4.7 µF) to ground. 6. INPUT TRACT: INPUTS, BUFFER, ADJUSTMENT 6.1 Unbalanced Input (RCA / Jack / Linear) The main mode is the unbalanced linear input, for example, RCA. Input tract structure: RF-filter and protection: Signal → series resistor Rin_series = 100–220 Ω After resistor — capacitor Cin_RF = 470–1000 pF to GND This forms a low-level RF filter and reduces high-frequency noise. DC-block (low-pass HP-filter): Capacitor Cin_DC = 2.2–4.7 µF film in series Resistor to ground Rin_to_GND = 47–100 kΩ Cut-off frequency — negligible in the audio range but removes DC. Input buffer / preamplifier (NE5532, U5): Non-inverting configuration. Input — after DC-block. Gain: adjustable, e.g., Rg_fixed = 10 kΩ (to GND through trimmer) Rf = 10–20 kΩ + footprint for trimmer (e.g., 20 kΩ) The gain should be in the range of 0 dB to +10…+12 dB. Possible configuration: Rg = 10 kΩ fixed Rf = 10 kΩ + 10 kΩ trimmer in series. This allows adjusting the overall level of the crossover according to the source and amplifier levels. Buffer output: A low-impedance output (after NE5532) This signal is simultaneously fed to the inputs of all filters: LP650 (LF) HP650 → LP2500 (MF) HP2500 (HF) 6.2 Balanced Input (XLR / TRS) — Optional, but laid out on the board The board should allow for a balanced input, even if it’s not used in the first revision. Implementation requirements: XLR/TRS connector (L, R, GND) or separate 3-pin header. Simple differential receiver on NE5532 (extra U6 package or use one channel of U5 if sufficient). Circuit: classic instrumentation amplifier or differential amplifier: Inputs: IN+ and IN– Output — single-ended signal of the same level (or slightly amplified), fed to DC-block and buffer (or directly to the buffer if integrated). Switching between balanced/unbalanced mode: Implement using jumpers / bridges or adapters: Either switch before the buffer, Or use two separate pads, one of which is unused. All balanced input grounds must be connected to the same AGND point as the unbalanced input to avoid ground loops. 7. LEVEL ADJUSTMENT OF BANDS (BEST METHOD) The level adjustment of each band (LOW, MID, HIGH) is required to match the sensitivity of the speakers and amplifiers. Recommended method: After each full filter (after LP650×2, MID-chain HP650×2 → LP2500×2, HP2500×2), install: A passive attenuator: Series: Rseries (0–10 kΩ, adjustable) Shunt: Rshunt to GND (10–22 kΩ, fixed or adjustable) For simplicity and reliability: Implementation on the board: For each band (LOW, MID, HIGH) provide: Pad for multi-turn trimmer 10–20 kΩ as a divider (between signal and ground) in the "level adjustment" configuration. If adjustment is not needed — install a fixed divider (two resistors) or simply use a jumper. It is preferable to use: For setup: multi-turn trimmers 10–20 kΩ, available on the top side of the board. Nominals for the initial configuration can be selected through measurements, but the PCB should have flexibility. This provides: Accurate balancing of band volumes without interfering with the filters; Flexibility for fine-tuning to the specific characteristics of the speakers. 8. INPUTS AND OUTPUTS OF THE CROSSOVER (FINAL) 8.1 Inputs 1× Unbalanced linear input (RCA or 3-pin header) 1× Balanced input (XLR/TRS or 3-pin header) — optional, but space must be provided on the board. Input impedance (unbalanced after RF-filter): 22–50 kΩ. The input tract must be implemented using shielded cables. 8.2 Outputs Outputs to amplifiers: Output Signal LOW OUT After LP650×2 (LF) MID OUT After HP650×2 → LP2500×2 (MF) HIGH OUT After HP2500×2 (HF) Each output: Series resistor 100–220 Ω (prevents possible oscillations and simplifies cable management). A nearby own AGND pad (ground output), so the signal pair SIG+GND runs together. Outputs should be compactly placed on 2-pin connectors (SIG+GND) or 3-pin (SIG+GND+reserve). 9. PCB DESIGN REQUIREMENTS 9.1 Board Number of layers: 2 layers Bottom layer: solid analog ground (AGND). 9.2 Component Placement Key principles: RC chains of each filter (R1, R2, C1, C2, Rf, Rg) should form a compact "island" around the corresponding op-amp. If elements are placed too far apart, the filter will not work correctly (calculated frequency and Q will shift). Feedback tracks (Rf and Rg) should be as short and direct as possible. The AM4T-4815DZ module should be placed: Far from the input buffer, Far from the first filter stages, If necessary, make a "cutout" in the ground under it to limit noise propagation. Place the input connector, RF-filter, and buffer on one side of the board, and the output connectors on the opposite side. 9.3 Ground The entire audio circuit uses one analog ground: AGND. Connect AGND to the power ground (48 V and amplifiers) at one point ("star"). The star should be implemented as: One point/pad where: The ground of the input, The ground of the filters, The ground of the outputs, The ground of the DC/DC. Avoid long narrow "ground" jumpers — use wide polygons with a single connection point. 9.4 Placement of Output Connectors Group LOW/MID/HIGH compactly. Each should have its own GND pad nearby. Route the SIG+GND pairs as signal pairs, avoiding large loops. 10. ADDITIONAL ELEMENTS: PROTECTION, TEST POINTS 10.1 Test Points (TP) Be sure to provide test points (pads): TP_IN — crossover input (after buffer) TP_LOW — LF filter output TP_MID — MF filter output TP_HIGH — HF filter output TP_+15, TP_–15, TP_GND — power control This greatly simplifies debugging with an oscilloscope. 10.2 Power Protection On the 48 V input — it is advisable to provide: Diode/scheme for reverse polarity protection (if possible), TVS diode or varistor for voltage spikes (optional). 10.3 Possible Stability Correction Pads for small capacitors (10–47 pF) in parallel with Rf in buffers and, if necessary, in some stages — in case of stability issues (this can be not installed in the first revision, but footprints should be provided). 11. BILL OF MATERIALS (BOM) Operational Amplifiers: NE5532 — 4 pcs (filters) NE5532 — 1–2 pcs (input buffer and balanced input) Total: 5–6 NE5532 packages. Resistors (1%, metal-film): 24.9 kΩ — 8 pcs 6.34 kΩ — 8 pcs 10 kΩ — ≥ 12 pcs (feedback, buffers, etc.) 5.9 kΩ — 8 pcs 22 kΩ — 1–2 pcs (input, auxiliary chains) 47–100 kΩ — several pcs (DC-block, input) 100 kΩ — 1 pc (if needed) 100–220 Ω — 4–6 pcs (outputs, RF, protection) 4.7–10 Ω — 2 pcs for each op-amp or group of op-amps (power filtering) — quantity to be clarified during routing. Trimmer Resistors: 10–20 kΩ multi-turn — one for each band (LOW, MID, HIGH) 10–20 kΩ — 1–2 pcs for the input buffer (overall gain adjustment). Capacitors: 10 nF film — 16 pcs (RC filters) 2.2–4.7 µF film — 1–2 pcs (input DC-block) 10–22 µF electrolytic — 2–4 pcs (DC/DC outputs) 1–4.7 µF (X7R / tantalum) — 1 pc for local power filtering (optional). 100 nF ceramic X7R — 10–20 pcs (local decoupling for each op-amp) 470–1000 pF — 1–2 pcs (RF filter on the input) 10–47 pF — optional for stability correction (Rf). Power Supply: AM4T-4815DZ — 1 pc Inductor 10–22 µH (if LC filter) — 1 pc R 1–2 Ω / 1–2 W — 1 pc (if RC filter). Connectors: Input (RCA + 3-pin for internal input) Balanced (XLR/TRS or 3-pin header) Outputs LOW/MID/HIGH — 2-pin/3-pin connectors. 12. TESTING RECOMMENDATIONS 12.1 First Power-up Apply ±15 V without installed op-amps. Check with a multimeter: +15 V –15 V No short circuits in the power supply. Install the op-amps (NE5532). Apply a sine wave of 100–200 mV RMS (signal generator). Check with an oscilloscope at TP: LP650 — should pass LF and roll off everything above 650 Hz. HP650 — should roll off LF, pass everything above 650 Hz. LP2500 — should roll off above 2500 Hz. **HP250 0** — should pass everything above 2500 Hz. 12.2 Phase Check The Linkwitz–Riley 4th order should give a flat frequency response when summed at the crossover points. This can be verified with REW/Arta. 12.3 Noise Check If there is noticeable "shshsh" or whistling: Check: Grounding layout (star) Placement and filtering of AM4T-4815DZ Presence and proper installation of all 100 nF and local filters. 13. FINAL RECOMMENDATIONS FOR BEGINNERS Do not rush, build the circuit step by step: input → buffer → one filter → test, then continue. Check component values at least twice before soldering. Filters should be routed as compact "islands" around the op-amp, do not stretch R and C across the board. Always remember the rule: "The feedback trace should be as short as physically possible." Before ordering the PCB, make a "paper prototype": print at 1:1, cut it out, place real components to check everything fits.


  • Brainstorm a new project with AI [Example]

    Brainstorm a new project with AI [Example]

    Ultra-Compact 4-Layer ESP32-C6 and BG95-M3 LTE Development Board with Onboard eSIM, π-Match RF Tuning, Controlled Impedance Routing, and Optional u.FL Connector


  • On Air R2 Demo

    On Air R2 Demo

    Daddy's second circuit board. A sign to let my wife know when I'm on a call. Activates with a slide switch and is powered by USB-C. R2 changes: -Moving to Letter Modules for ease of design -Adding ESP32 for WiFi On/Off and intensity control -Optional: Add unpopulated AA Battery Holder for battery option R1 changes: -Changed LED part to Red LEDs -adjusted resistor value of buck converter -Changed source for USB-C Connector -Removed exposed soldermask on buck converter with negative soldermask expansion -Order with black soldermask Modified by markwu2001: Adjustable Brightness, 85-90% Drive Efficiency <5W Operation (Can use 5V 1A Plug) This project can be purchased from LCSC


  • PCBWay 4 Layer Stackup

    PCBWay 4 Layer Stackup

    Compact 2-Layer ESP32-WROOM-32E Ultrasonic Emitter Board with USB-C Auto-Programming, On-Board 12 V→3.3 V Buck, 3× Low-Side MOSFET Drivers, Optional U.FL Antenna, ESD/TVS Protection, RF/Power Partitioning, and Named Nets (PWR_12V_IN, 3V3, GND, DRV_CH1/2/3, LED_PWR/LED_NET/LED_EMIT) #ultrasonic #ESP32 #RFDesign #PowerDesign #PCBDesign


  • dacre-footprint-test

    dacre-footprint-test

    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary


  • On Air R2 - Thread Enabled

    On Air R2 - Thread Enabled

    R2 w Thread changes: -Moving to Letter Modules for ease of design -Adding MGM210L for Matter on Thread On/Off and intensity control -Shifted A and R letters closer to fix Kerning -Optional: Add unpopulated AA Battery Holder for battery option R1 changes: -Changed LED part to Red LEDs -adjusted resistor value of buck converter -Changed source for USB-C Connector -Removed exposed soldermask on buck converter with negative soldermask expansion -Order with black soldermask Modified by markwu2001: - Adjustable Brightness, - 85-90% Drive Efficiency - <5W Operation (Can use 5V 1A Plug) This project can be purchased from LCSC Original Description: Daddy's second circuit board. A sign to let my wife know when I'm on a call. Activates with a slide switch and is powered by USB-C. #template #arduino-matter


  • Vivid Yellow Electronic Thumb

    Vivid Yellow Electronic Thumb

    1.1 BLE Beacon Tags – Dual-Mode (BLE + LoRa) Installation: Mounted on safety helmets. Specification Requirement Communication Protocols BLE 5.0+ and LoRaWAN 1.0.4 Class A/B BLE Range Up to 150 meters LoRa Range > 5 km Battery Life BLE: ≥ 5 years; LoRa: ≥ 8 years Indoor Accuracy 1–5 meters using BLE Outdoor Accuracy 1–10 meters using LoRa + IMU + AI (no GPS on tag) Sensors 3-axis IMU, optional T&H, fall detection Alert Features SOS button, red LED, buzzer, vibration motor IP Rating IP67 minimum Operating Temperature -20°C to +70°C Certifications IECEx, IPSEC, FCC, CE, RoHS, REACH Branding White label with client logo


  • Generic Capacitor

    Generic Capacitor

    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary


  • Prepared Salmon Liquid Breathing Apparatus

    Prepared Salmon Liquid Breathing Apparatus

    This project is focused on designing a highly efficient PCB for a switching power supply using a robust selection of electronic components. Our design leverages a flyback topology featuring a ferrite transformer (options EE25 or EE33), a PWM integrated circuit (TL494, SG3525, or UC3842), and a power MOSFET (IRF840 or a similar alternative) for effective high-voltage switching. Fast and reliable rectification is ensured by using a Schottky diode (MBR20100 or FR107) along with a rectifier bridge built from four 1N4007 diodes or a dedicated 4A bridge. Key stabilization and regulation components include the TL431 reference regulator and a Zener diode for precise voltage control in critical areas. For input and output filtering, the design incorporates electrolytic capacitors (470 µF, 25 V for output and 400 V, 100 µF for input) and ceramic capacitors (ranging from 1 nF to 100 nF) to limit high-frequency noise. Additional safety and operational features are provided by an NTC (soft-start thermistor) to prevent current spikes, various resistors (from 1 Ω to 100kΩ), an optocoupler (PC817) for signal isolation, a switch, and a protection fuse. Before moving forward with a finalized PCB layout and schematic details, we need to clarify a few design choices: 1. Transformer Choice: Would you prefer using the EE25 or the EE33 ferrite transformer variant as the heart of the switching power supply design? This detailed approach ensures that the power supply not only meets rigorous performance and safety standards but also supports a reliable and scalable solution for various electronic applications. #PCBDesign #SwitchingPowerSupply #Electronics #SMPS #PowerElectronics #FlybackConverter #CircuitDesign #ElectronicsComponents


  • On Air Sign [You're Holding it Wrong]

    On Air Sign [You're Holding it Wrong]

    R2 changes: -Moving to Letter Modules for ease of design -Adding ESP32 for WiFi On/Off and intensity control -Optional: Add unpopulated AA Battery Holder for battery option R1 changes: -Changed LED part to Red LEDs -adjusted resistor value of buck converter -Changed source for USB-C Connector -Removed exposed soldermask on buck converter with negative soldermask expansion -Order with black soldermask Modified by markwu2001: - Adjustable Brightness, - 85-90% Drive Efficiency - <5W Operation (Can use 5V 1A Plug) This project can be purchased from LCSC Original Description: Daddy's second circuit board. A sign to let my wife know when I'm on a call. Activates with a slide switch and is powered by USB-C. #template


  • Raspberry Pi Pico 2 Shield Template

    Raspberry Pi Pico 2 Shield Template

    This is the project template for the Raspberry Pi Pico 2, the latest addition and update to Pi Pico line up. Raspberry pi pico 2 is equipped with the RP2350, a cutting-edge, high-performance microcontroller designed with enhanced security and versatility in mind. Every element of its design has been upgraded, from the advanced CPU cores to the innovative PIO (Programmable I/O) interfacing subsystem. The Raspberry Pi Foundation has integrated a robust security architecture centered around Arm TrustZone for Cortex-M, ensuring data protection and integrity. Additionally, new low-power states and expanded package options broaden the range of applications, making the Pico 2 an ideal choice for diverse, power-sensitive projects. To learn more about what's the key differences between the original Pi Pico and the new Pi Pico 2, read our blog https://www.flux.ai/p/blog/whats-new-in-the-raspberry-pi-pico-2-a-showdown-with-the-original-raspberry-pi-pico #project-template #template #raspberry #pi #pico2 #newpico


  • AO3414 526a

    AO3414 526a

    The AO3414 from Alpha & Omega Semiconductor is an N-Channel Enhancement Mode Field Effect Transistor (FET) leveraging advanced trench technology to deliver excellent RDS(ON), low gate charge, and reliable operation with gate voltages as low as 1.8V. Engineered for applications requiring reliable load switching or precise control in PWM circuits, the AO3414 is well-suited for high-efficiency performance. This component features a maximum drain-source voltage (VDS) of 20V and supports a continuous drain current (ID) of 4.2A at VGs of 4.5V. Distinguishing characteristics include RDS(ON) values of less than 50mΩ at VGS = 4.5V, 63mΩ at VGS = 2.5V, and 87mΩ at VGS = 1.8V, ensuring minimal power loss and optimal thermal efficiency. Packaged in a compact TO-236 (SOT-23) form factor, it meets Pb-free standards and is available as the AO3414L for a Green Product option, both versions maintaining electrical equivalence. The AO3414 also boasts fast switching times and robust thermal performance, with comprehensive specifications confirming its suitability for high-performance consumer electronics.

    jbreidfjord-dev


  • AO3414 peHU

    AO3414 peHU

    The AO3414 from Alpha & Omega Semiconductor is a N-channel enhancement mode field-effect transistor (FET) that utilizes advanced trench technology to offer exceptional performance characteristics, including low RDS(ON), minimal gate charge, and compatibility with gate voltages as low as 1.8V. This component is specifically designed for use in load-switching and PWM applications. The AO3414 is a Pb-free product meeting ROHS and Sony 259 specifications, with an option for a Green Product under part number AO3414L. Both variants are electrically identical. Key specifications include a drain-source voltage (VDS) of 20V, a continuous drain current (ID) of 4.2A at VGS=4.5V, and various RDS(ON) values depending on the gate voltage, with a maximum of 87mΩ at VGS=1.8V. Encased in the TO-236 (SOT-23) package, the AO3414 features a maximum power dissipation of 1.4W at 25℃ and a junction-to-ambient thermal resistance of 90°C/W. This robust FET additionally offers a commendable forward transconductance of 11 S and a low total gate charge of 6.2 nC, making it an efficient choice for high-performance applications.

    jbreidfjord-dev


  • On Air R2

    On Air R2

    R2 changes: -Moving to Letter Modules for ease of design -Adding ESP32 for WiFi On/Off and intensity control -Optional: Add unpopulated AA Battery Holder for battery option R1 changes: -Changed LED part to Red LEDs -adjusted resistor value of buck converter -Changed source for USB-C Connector -Removed exposed soldermask on buck converter with negative soldermask expansion -Order with black soldermask Modified by markwu2001: Adjustable Brightness, 85-90% Drive Efficiency <5W Operation (Can use 5V 1A Plug) This project can be purchased from LCSC Original Description: Daddy's second circuit board. A sign to let my wife know when I'm on a call. Activates with a slide switch and is powered by USB-C. #template


  • OPA2835ID c002

    OPA2835ID c002

    The OPA835 and OPA2835 from Texas Instruments are ultra-low-power, rail-to-rail output, voltage-feedback (VFB) operational amplifiers. Designed for high-performance applications, these single (OPA835) and dual (OPA2835) op-amps operate over a power supply range of 2.5 V to 5.5 V. Consuming a mere 250 µA per channel, they offer a remarkable balance of power efficiency and performance, boasting a unity-gain bandwidth of 56 MHz, a slew rate of 160 V/µs, and ultra-low THD of 0.00003% at 1 kHz. Key features include a large signal bandwidth, negative rail input, power-down mode reducing current to 0.5 µA, and input voltage noise of 9.3 nV/√Hz at 100 kHz. Packaged options such as SOT-23, QFN, SOIC, VSSOP, and UQFN are available, accommodating a range of design requirements. The devices are ideal for battery-powered and portable applications, offering superior performance-to-power ratios for high-frequency amplifiers.

    jbreidfjord-dev


  • OPA2863DR wBM3

    OPA2863DR wBM3

    The Texas Instruments OPA863, OPA2863, and OPA4863 are low-power, voltage-feedback operational amplifiers designed to offer a unity-gain stable, rail-to-rail input and output with a 110-MHz bandwidth. These amplifiers are optimized for a broad power supply range from 2.7 V to 12.6 V, catering to a variety of portable and battery-powered applications. Key features include a quiescent current of 700-uA/ch (typical), a gain-bandwidth product of 50 MHZ, input voltage noise of 5.9-nV/VHz, and a slew rate of 105-V/us. The series also highlights specialized versions including the OPAx863A for high precision requirements, and all models integrate features like overload power limit and output short-circuit protection for ruggedized environments. The devices’ applicability spans across multiple domains including low-power SAR and ΔΣ ADC drivers, ADC reference buffers, photodiode transimpedance amplifiers, and more. The comprehensive array of packages available (including SOT-23, VSSOP, WQFN, and TSSOP options) ensures flexibility in hardware design, making these operational amplifiers from Texas Instruments suitable for high-performance, space-conscious, and power-sensitive electronic circuits.


  • ADA4084-2ARZ

    ADA4084-2ARZ

    The ADA4084-1, ADA4084-2, and ADA4084-4, manufactured by Analog Devices, Inc., are a series of low-power, rail-to-rail input/output operational amplifiers designed to operate from a single supply voltage ranging from +3 V to +30 V (or ±1.5 V to ±15 V). These amplifiers are characterized by their low noise performance (3.9 nV/√Hz at 1 kHz typical), low offset voltage (100 uV maximum for the SOIC package), and low power consumption (0.625 mA typical per amplifier at +15 V). With a gain bandwidth product of 15.9 MHz and a slew rate of 4.6 V/μs typical, these amplifiers are suitable for a broad range of applications, including battery-powered instrumentation, high-side and low-side sensing, power supply control and protection, and telecommunications among others. The ADA4084 series is available in various package options, ensuring flexibility and compatibility for different design requirements. Notably, the long-term drift and temperature hysteresis are meticulously engineered for consistent performance over time and across temperature variations, making these amplifiers robust choices for applications demanding precision and stability.


  • On Air R2 Demo

    On Air R2 Demo

    R2 changes: -Moving to Letter Modules for ease of design -Adding ESP32 for WiFi On/Off and intensity control -Optional: Add unpopulated AA Battery Holder for battery option R1 changes: -Changed LED part to Red LEDs -adjusted resistor value of buck converter -Changed source for USB-C Connector -Removed exposed soldermask on buck converter with negative soldermask expansion -Order with black soldermask Modified by markwu2001: - Adjustable Brightness, - 85-90% Drive Efficiency - <5W Operation (Can use 5V 1A Plug) This project can be purchased from LCSC Original Description: Daddy's second circuit board. A sign to let my wife know when I'm on a call. Activates with a slide switch and is powered by USB-C. #template


  • PAM8610TR 9dA5 0ec4

    PAM8610TR 9dA5 0ec4

    The PAM8610, manufactured by Power Analog Microelectronics, is a high-performance, 10W (per channel) stereo class-D audio amplifier featuring DC volume control. This component is designed to deliver low THD+N (0.1%), low EMI, and high efficiency (>90%), making it ideal for high-quality sound reproduction in a variety of applications such as flat monitor/LCD TVs, multi-media speaker systems, DVD players, game machines, boomboxes, and musical instruments. Operating off a 7V to 15V supply, the PAM8610 distinguishes itself with its 32-step DC volume control ranging from -75dB to 32dB, shutdown/mute/fade functions, and comprehensive protection against overcurrent, thermal, and short-circuit conditions. Its low quiescent current, pop noise suppression, and minimal external component requirement further enhance its appeal for compact and efficient audio solutions. The PAM8610 is available in a compact 40-pin QFN 6mm*6mm package, ensuring a small footprint for space-constrained applications. Compliance with RoHS standards underscores its environmental consideration. With its advanced features and high integration level, the PAM8610 offers a compelling option for designers seeking to incorporate robust audio amplification with fine-grained volume control in their electronic projects.


  • NTMFS4C03NT1G

    NTMFS4C03NT1G

    The NTMFS4C03N, manufactured by ON Semiconductor, is a high-performance, single N-Channel MOSFET designed for power applications. Encased in a compact SO-8FL package, this component offers a maximum drain-to-source voltage (VDSS) of 30V and a continuous drain current (ID) of up to 136A at 25°C. With an exceptionally low RDS(on) of 2.1 mΩ at VGS of 10V, it minimizes conduction losses, making it ideal for high-efficiency power management. Additionally, the MOSFET features low gate charge (QG) and capacitance, reducing driver losses and enhancing overall system efficiency. The device is Pb-Free, Halogen Free/BFR Free, and RoHS compliant, ensuring adherence to environmental standards. It also boasts a robust thermal performance with a junction-to-case thermal resistance (RθJC) of 1.95°C/W, making it suitable for applications requiring efficient heat dissipation. The NTMFS4C03N is available in tape and reel packaging options, accommodating various manufacturing needs.

    jbreidfjord-dev


  • AT91SAM9260B-CU

    AT91SAM9260B-CU

    The Atmel® | SMART SAM9260, manufactured by Atmel, is an ARM-based Embedded Microprocessor Unit (MPU), integrating the ARM926EJ-STM processor operating at 180 MHz. This MPU includes substantial on-chip memory and extensive peripherals, including an Ethernet MAC, USB Device and Host Ports, along with various standard interfaces such as USART, SPI, TWI, Timer Counters, and MultiMedia Card Interface. Architected on a 6-layer matrix delivering a maximum internal bandwidth of six 32-bit buses, it supports external 32-bit bus interfaces for SDRAM, static memories, CompactFlash, and SLC NAND Flash with ECC. The SAM9260 is available in 217-ball LFBGA and 208-pin PQFP packages. Key features include 8 Kbytes each of data and instruction cache, integrated MMU, two internal 4-Kbyte SRAMs, a 32-Kbyte ROM with bootloader, 22 Peripheral DMA channels, various power-on reset modes, two programmable clock signals, advanced interrupt controller, and multiple power management options for optimized performance and energy efficiency.

    jbreidfjord-dev


  • OPA2835ID 0111

    OPA2835ID 0111

    The OPA835 and OPA2835 from Texas Instruments are single and dual ultra-low-power, rail-to-rail output, negative-rail input, voltage-feedback (VFB) operational amplifiers designed for optimal performance in battery-powered and portable systems. Operating over a power supply range of 2.5 V to 5.5 V, these op amps consume only 250 µA per channel and offer a unity gain bandwidth of 56 MHz, making them industry leaders in performance-to-power ratio for rail-to-rail amplifiers. These components feature a quiescent current of 250 µA/ch (typical), with a power-down mode reducing current to 0.5 µA (typical), a slew rate of 160 V/µs, a rise time of 10 ns for a 2 V step, and a settling time of 55 ns to 0.1% for a 2 V step. Additional features include a signal-to-noise ratio (SNR) of 0.00015% (-116.4 dBc) at 1 kHz (1 VRMS), total harmonic distortion (THD) of 0.00003% (-130 dBc) at 1 kHz (1 VRMS), and a wide input voltage noise of 9.3 nV/√Hz at 100 kHz. The OPA835 and OPA2835 provide rail-to-rail output swing and input voltage range from -0.2 V to 3.9 V (5-V supply), supporting high-density, low-power signal conditioning applications with an operating temperature range from -40°C to +125°C. These components come in various package options, ensuring flexible integration into diverse electronic designs.

    jbreidfjord-dev


  • OPA2835IRUNR 810f

    OPA2835IRUNR 810f

    The Texas Instruments OPA835 and OPA2835 are ultra-low-power, rail-to-rail output, negative-rail input, voltage-feedback (VFB) operational amplifiers designed for operation across a wide power supply range of 2.5 V to 5.5 V with a single supply or +1.25 V to +2.75 V with a dual supply. These components are notable for their industry-leading performance-to-power ratio, which features a quiescent current of just 250 µA per channel and a unity gain bandwidth of 56 MHz. They are ideal for battery-powered, portable applications where power efficiency is critical, without compromising on high-frequency performance. The OPAx835 series brings the added benefit of a power-savings mode, reducing current consumption to less than 1.5 µA, making them an attractive choice for high-frequency amplifiers in battery-powered systems. Their compact package options, including SOT-23, SOIC, VSSOP, UQFN, and QFN, cater to space-constrained applications, providing a versatile solution for low-power signal conditioning, audio ADC input buffers, low-power SAR and ΔΣ ADC drivers, portable systems, low-power systems, high-density systems, and ultrasonic flow meters.