Dron Özellikleri

1:29

General
Chat History
Project
A alto nivel, así se distribuye la energía desde la batería hacia potencia (ESCs) y control:
  • Entrada y distribución de batería 14.8 V (4S)
    • Conectores XT60: J1, J2, J3, J4, J5.
    • Filtrado/almacenamiento en el bus de batería: C6A, C6B.
    • Estas líneas alimentan directamente los ESCs desde el bus “VCC 14.8V Batt”.
  • Conversión a 5 V para la lógica/VSYS
    • Convertidor buck: MP2338 (de 14.8 V a 5 V).
    • Pasivos clave del buck:
      • Entrada/enable: R3, R4 (control de EN y umbral), entrada: C6A, C6B.
      • Conmutación/salida: inductor L1, bootstrap C4, soft-start C5, filtros de salida C7A, C7B, C8, realimentación R6, R7, señal PG con pull-up R5.
    • Aislamiento hacia VSYS del Pico: diodo Schottky D1 desde el “5V Buck Out” a VSYS, con reserva C1.
  • Regulación a 3.3 V para dispositivos de control
    • El PICO toma VSYS y genera 3.3 V (Net “Vcc3v3 Pico”) para los periféricos.
    • Alimentados a 3.3 V: radio U3 (NRF24L01), GNSS NEO-M9N, barómetro BMP280, IMU MPU-6050, con desacoplos locales C2, C3.
  • Dominio de respaldo (solo GNSS backup)
    • Moneda CR1220 V_BCKP a través del diodo D2 y el condensador C6 mantiene NEO-M9N:V_BCKP cuando el principal se corta.
En resumen: los XT60 ([J1]-[J5]) distribuyen 14.8 V a potencia/ESC; el buck [MP2338] genera 5 V, el diodo [D1] alimenta VSYS del [PICO], y el [PICO] entrega 3.3 V a los dispositivos de control.
77 days

Ready.


Please show me how to connect this GPS module to the PICO and the U.FL antenna c...

@copilot Please show me how to connect this GPS module to the PICO and the U.FL antenna connector designated by J10
1y
To connect the NEO-M9N GPS module to the Raspberry Pi Pico and the U.FL antenna connector (J10) in your quadcopter drone project, you'll need to consider both data communication and the antenna connection for receiving GPS signals. The NEO-M9N communicates via UART or I2C; given the requirements and available connections, I will assume UART communication as it's commonly used for GPS modules with microcontrollers like the Pico.
GPS Module (NEO-M9N) to Raspberry Pi Pico Connections
Based on the pins description given in your project, here are the connections for UART communication:
  • UART TX/RX Connection: Connect the NEO-M9N's TXD (Transmit) to the Pico's RX (Receive) pin, and the NEO-M9N's RXD (Receive) to the Pico's TX (Transmit) pin.
    • Connect NEO-M9N:21 (TXD/SPI_MISO) to PICO:2 (GPIO1) (PICO RX)
    • Connect NEO-M9N:20 (RXD/SPI_MOSI) to PICO:1 (GPIO0) (PICO TX)
  • Power and Ground: The NEO-M9N module can operate with 3.3V, which matches the Pico's operating voltage.
    • Connect NEO-M9N:23 (VCC) to PICO:39 (3V3) (3.3V Power)
    • Connect NEO-M9N:10 (GND) to PICO:3 (GND) (Ground)
GPS Antenna Connection
For the GPS antenna connection using the U.FL connector (J10):
  • Antenna Connection: Connect the NEO-M9N's antenna pin to the antenna connector J10.
    • Connect NEO-M9N:11 (RF_IN) to J10:2 (Center_Contact)
  • Ground for Antenna: Ensure that the ground for the U.FL connector is connected to the system ground.
    • Connect J10:1 (Outer_Contact) and J10:3 (Outer_Contact) to PICO:3 (GND) (Ground)
Summary
  • UART Communication
    • Connect NEO-M9N:21 (TXD/SPI_MISO) to PICO:2 (GPIO1) for UART receive.
    • Connect NEO-M9N:20 (RXD/SPI_MOSI) to PICO:1 (GPIO0) for UART transmit.
  • Power Connections
    • Connect NEO-M9N:23 (VCC) to PICO:39 (3V3) for 3.3V power.
    • Ground connections are made to PICO GND pins.
  • GPS Antenna
    • Connect NEO-M9N:11 (RF_IN) to J10:2 (Center_Contact) for GPS antenna signal.
    • Ground connections for antenna via J10:1 (Outer_Contact) and J10:3 (Outer_Contact) to the PICO GND.
Please make sure to confirm the UART pins and configuration in your code, matching the connections. Other settings related to UART communication, such as baud rate, parity, stop bits, etc., should be configured according to the NEO-M9N's datasheet specifications.
1y
Someone is typing...
By connecting SDO to GND, address 0x76 is selected. 0x77 can be selected by conn...

By connecting SDO to GND, address 0x76 is selected. 0x77 can be selected by connecting to 3.3V instead
1y
Someone is typing...
18
list all NEO-M9N pins in a table format. For each pin provide its pin number, pi...

@copilot list all NEO-M9N pins in a table format. For each pin provide its pin number, pin name and function.
1y
Here is a table listing all the pins for the NEO-M9N module, along with their designated pin number, pin name, and function, based on the provided excerpts:

Table


Pin no.NameFunction
1SAFEBOOT_NUsed for FW updates and reconfiguration, leave open
2D_SELInterface select (open or VCC = UART + I2C; GND = SPI)
3TIMEPULSETIMEPULSE (1 PPS)
4EXTINTEXTINT (PIO 7)
5USB_DMUSB data (DM)
6USB_DPUSB data (DP)
7V_USBUSB supply
8RESET_NRESET (active low)
9VCC_RFVoltage for external LNA
10GNDGround
11RF_INGNSS signal input
12GNDGround
13GNDGround
14LNA_ENAntenna/LNA control
15ReservedReserved
16ReservedReserved
17ReservedReserved
18SDA / SPI CS_NI2C data if D_SEL = VCC (or open); SPI chip select if D_SEL = GND
19SCL / SPI SLKI2C clock if D_SEL = VCC (or open); SPI clock if D_SEL = GND
20TXD / SPI MISOUART output if D_SEL = VCC (or open); SPI MISO if D_SEL = GND
21RXD / SPI MOSIUART input if D_SEL = VCC (or open); SPI MOSI if D_SEL = GND
22V_BCKPBackup voltage supply
23VCCSupply voltage
24GNDGround
This table reflects the NEO-M9N-00B module's pin assignments and functionalities as described in the datasheet excerpts.
1y
Someone is typing...
20
V_BCKP
BMP280
C6
Capacitance
0.1 F
VCC3v3_PICO
R1
Resistance
3.3k Ω
R2
Resistance
3.3k Ω
D2
22
can you add a 4g lte modem, one if its available. that doesnt requurea sim card ...

@copilot can you add a 4g lte modem, one if its available. that doesnt requurea sim card and a sim card slot holder to the entire design. if a sim cardcard is required use a nano sim card slot holder for ithe modem
1y
To incorporate a 4G LTE modem into your drone circuit design, we'll need to consider a few aspects:
  1. Selecting an LTE Modem Module: Most 4G LTE modules require a SIM card to connect to cellular networks. However, some modules support eSIM, which integrates the SIM functionality on the chip itself. Since you're asking for a module that doesn't require a SIM card, an eSIM-enabled module is the closest option.
  2. Power Supply: Ensure that the power requirements of the LTE module are compatible with your existing voltage levels. Most modules operate on 3.3V, so if your module operates differently, we'll have to consider voltage level translation or conversion.
  3. Interfacing: LTE modules commonly use UART, USB, or SPI interfaces. We need to ensure that the Raspberry Pi Pico can communicate with the module via available GPIO pins.
  4. Antenna: Since the U.FL connectors are present, you might be able to use one for antenna connections.
  5. SIM Card Holder: In case we opt for a module that requires a SIM card, a nano SIM card slot will be necessary.
Suggested Steps:
  • Select an LTE module: For instance, the Quectel EC25 is a popular module that would require a SIM card.
  • Add a Nano SIM card holder: Something like the Amphenol SCHA4B0200 can be used.
  • Connections:
    • Connect the LTE module's power and ground pins to appropriate power sources and ground.
    • Use available GPIO pins on the Raspberry Pi Pico to connect to the modem's UART interface for communication.
    • Antenna connections can be made using U.FL connectors already present in your schematic.
Let me know if the Quectel EC25 works for your needs, or if there's another module you have in mind. Once we confirm the selection, we can proceed with detailing the connections further!
1y
Someone is typing...


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

Drone

Drone
Description

Created
Last updated by rafaelzasas
1 Contributor(s)
rafaelzasas

Controls

Properties

Availability & Pricing

DistributorQty 1
Digi-Key$26.94–$42.09
LCSC$66.21
Mouser$41.88

Assets