光控LED電路設計

0:53

General
Chat History
Project
Action

Checking if I can make the changes for you.

Got it. Here’s the concise PCB layout plan for your fire detector system. Click Start when ready and I’ll proceed step by step.
  1. Prepare stackup
  • 4-layer target: L1 signals, L2 solid GND plane, L3 power (3.3 V, VBAT, 5 V islands), L4 signals.
  • Keep L2 uninterrupted; stitch to GND with vias around RF and sensor returns.
  1. Verify footprints
  • Confirm each placed part matches datasheet: U3, U4, U5, U6, U7, antennas Y1 and Y2, connectors J6, J7, power/battery BT1, UI D2, BZ1. Replace any mismatches before placement.
  1. Set board outline and size
  • Define a provisional rectangle (e.g., 90 mm x 60 mm). Leave keep-outs near GNSS/cellular antennas per module datasheets.
  1. Placement strategy
  • RF edge: place U4 and U5 near a board edge with clear antenna corridor; put J6, J7 at the edge.
  • MCU core centrally: U3 centered, short runs to RF UARTs and sensors.
  • Power corner: U6, battery BT1, and U7 grouped; keep charger path short and thermal relief.
  • Sensors quiet zone: smoke/heat sensors away from RF/power; ensure airflow paths around sensors.
  • UI side: LEDs, buzzer BZ1, and buttons on one edge.
  1. Key layout rules
  • Net classes: set wide traces for VBAT/5 V and cellular peaks (≥1 mm for short runs), 3.3 V main rails 0.25–0.4 mm, signals 0.15–0.2 mm. Keep RF lines 50 Ω where applicable and short to U.FL.
  • Grounding: continuous L2 ground; star-join noisy power returns away from sensor ground. Stitch vias near module grounds and perimeter (per knowledge base guidance about switching regulators and ground return paths).
  • Decoupling: place caps at each IC power pin pair; via to L2 directly next to pad.
  • Keep-outs: honor GNSS and LTE antenna module keep-outs; no copper under antenna zones.
  1. Final pre-route checks
  • DRC clean, footprints oriented, airwires sane, room for routing/fanout (knowledge base recommends leaving space and using airwires to visualize routing paths).
  • Add test points for UART/GNSS and key rails. For ESP32-type designs the knowledge base suggests programming pads; similarly add SWD pads for the MCU if not already placed.
Questions before I start:
  • Confirm 4-layer stackup, or prefer 2-layer?
  • Any target board size/enclosure limits?
  • External or onboard antennas for GNSS/cellular?
65 days

Needs more info.

Show Plan


how to make a rf pcb

@copilot how to make a rf pcb
1y
Designing an RF (Radio Frequency) PCB requires careful consideration of various factors due to the sensitive nature of RF signals. Here are some key steps and tips that will help you design an effective RF PCB, especially within the Flux environment:
1. Begin with a Robust Schematic:
  • Start by designing a clean and clear schematic for your RF circuit in Flux. Include all the components such as amplifiers, filters, mixers, and any RF modules you're planning to use.
  • For instance, if integrating an RF module, designate it as RF_Module:1, RF_Module:2, ..., RF_Module:n for the pins, where n is the number of pins.
2. Component Selection and Placement:
  • Choose RF components that match your required frequency and power specifications. For RF circuits, component characteristics at the operating frequencies are critically important.
  • Place your components in a way that minimizes the length of RF traces, as longer traces can lead to signal loss and unwanted emissions.
  • Components with a high rate of signal transition (e.g., oscillators, switches) should be placed as close as possible to their targets to minimize paths.
3. Impedance Matching:
  • Ensure that your transmission lines (traces) are impedance matched to minimize reflections, which could otherwise lead to signal loss. For RF, a common target impedance is $50 \Omega$.
  • Utilize microstrip or stripline designs for your transmission lines depending on the layer stack and shield requirements. Calculations for these lines depend on the substrate material and thickness, so having a good PCB materials reference is essential.
4. Layer Stack-up:
  • Use a multi-layer PCB design to provide ample ground planes and routing layers. RF circuits benefit significantly from a dedicated ground layer to reduce noise.
  • Position sensitive RF signal layers as far away from potential sources of interference as possible, within the constraints of your design.
5. Decoupling and Bypassing:
  • RF circuits are sensitive to power supply noise, so use decoupling capacitors near the power pins of active components to filter out noise.
  • Bypass capacitors might also be needed to shunt high-frequency noise away from the RF paths.
6. Trace Widths and Routing:
  • Calculate the width of your RF traces to ensure proper characteristic impedance. This can be done using PCB transmission line calculators available online.
  • Avoid sharp bends in RF traces; use mitered bends instead to reduce signal reflection.
7. Shielding and Grounding:
  • Consider adding shielding to your RF components and lines to prevent interference with other parts of your PCB.
  • Make extensive use of ground via stitches along your RF traces to create a low-inductance path to ground and improve EMC performance.
8. Simulation and Prototyping:
  • Utilize simulation tools to model your RF circuit's behavior before moving to prototyping. Pay attention to S-parameters, matching network effectiveness, and potential parasitic effects.
  • Test your prototype extensively to verify that it performs as expected in real-world conditions.
9. Review and Iterate:
  • RF designs often require several iterations to perfect. Use feedback from testing and simulations to refine your design.
In Flux, while you won’t directly deal with the physical aspects like material selection or PCB fabrication details, focusing on a clean schematic layout, logical component placement, and proper connection practices will substantially ease the translation of your design to a physically realizable RF PCB.
1y
Someone is typing...
dieses schalt plan textuell schreiben inreihe parallel mit komponenten https://...

1y
Basierend auf dem angezeigten Schaltplan werde ich eine textuelle Beschreibung der Schaltung in deutscher Sprache geben. Die Schaltung beinhaltet hauptsächlich zwei NE555 Timer(IC1), einen CD4011 NAND-Gatter(IC2), Transistoren, Dioden, Widerstände und Kondensatoren.
Hier ist die textuelle Beschreibung der Schaltungsverbindungen in einer Liste:
  • Connect D1:Anode to 6V power supply. Connect D1:Cathode to R1:1.
  • Connect R1:2 to Q1:Base and C1:1. Connect C1:2 to Q1:Emitter (which is connected to GND).
  • Connect Q1:Collector to R2:1 and IC1(A):Trigger.
  • Connect D2:Anode to R2:2. Connect D2:Cathode to IC2:N3.
  • Connect IC1(A):Threshold to C3:1. Connect C3:2 to IC1(A):Discharge.
  • Connect IC1(A):Control Voltage to R3:1 and R4:1.
  • Connect R3:2 and R4:2 to Vcc.
  • Connect IC1(A):Output to R5:1.
  • Connect R5:2 to IC2:N4 and LED2:Anode. Connect LED2:Cathode to GND.
  • Connect IC2:Output to Q4:Base.
  • Connect Q4:Collector to R6:1.
  • Connect R6:2 to LED4:Anode. Connect LED4:Cathode to GND.
  • Connect IC2:N2 to R8:1 and R9:1.
  • Connect R8:2 and R9:2 to IC1(B):Trigger and Threshold.
  • Connect IC1(B):Control Voltage to GND.
  • Connect IC1(B):Discharge to R10:1 and C4:1.
  • Connect R10:2 to GND.
  • Connect C4:2 to IC1(B):Threshold.
  • Connect IC1(B):Output to R11:1.
  • Connect R11:2 to Q2:Base.
  • Connect Q2:Collector to R12:1 and D3:Anode. Connect D3:Cathode to IC2:N1.
  • Connect R12:2 to LED3:Anode. Connect LED3:Cathode to GND.
  • Connect IC2:N1 to T2:Collector and R7:1.
  • Connect T2:Emitter to GND. Connect T2:Base to R13:2.
  • Connect R13:1 to 6V power supply.
  • Connect R7:2 to Q3:Base.
  • Connect Q3:Emitter to GND.
  • Connect Q3:Collector to LED1:Anode. Connect LED1:Cathode to GND.
Bitte beachten Sie, dass die Verwendung von Designatoren wie Q1, R1, etc. den Komponenten in der Schaltung entsprechen, wie sie üblicherweise beschriftet werden. Wenn Sie Ihren spezifischen Designatoren oder Komponentennamen folgen, sollten Sie diese entsprechend anpassen.
Diese Beschreibung kann als Basis für das Erstellen eines äquivalenten Schaltplans in einem CAD-Programm wie Flux dienen. Beachten Sie, dass zusätzliche Informationen zur genauen Positionierung der Elemente und ihrer physischen Konfiguration für den vollständigen Schaltplan benötigt werden würden.
1y
Someone is typing...
4
que puedo hacer con esto?

@copilot que puedo hacer con esto?
2y
Actualmente tu proyecto tiene un Power Net Portal (Portal de Red de Potencia). Se usa para definir una red de alimentación o tierra en tu diseño. Estos permiten indicar convenientemente una red de energía en cualquier ubicación en tu diseño. Las redes de energía con el mismo designador (P1 en tu caso) se conectarán automáticamente en tu diseño.
Usos comunes:
  • Representar líneas de suministro de energía o tierra que están conectadas en toda la placa, como VCC, GND, 3.3V, 5V, etc.
  • Evitar el desorden en el diagrama al no tener que dibujar líneas de conexión para estas señales comunes a través de todo el diagrama.
Aquí está lo que puedes hacer a continuación:
  1. Añadir componentes: Haz clic en el botón de añadir componentes para buscar y seleccionar componentes para tu diseño.
  2. Conectar los componentes: Cuando hayas añadido los componentes, puedes comenzar a dibujar conexiones entre los pines de los componentes y el Power Net Portal.
  3. Asignar valors a Power Net: Asegurate de asignar el valor correcto a tu Power Net Portal como VCC, GND, 5V etc.
Espero que esto sea útil! Estaré encantado de responderte si tienes más preguntas.
2y
que puedo hacer con esto?
2y
Someone is typing...
3
what is this

2y
This appears to be an initial setup for an electronic design project in Flux. The main component is a Power Net Portal, which is a unique schematic object designed to define power or ground networks. By denoting power nets, you can easily showcase a power network throughout your design from any location. If you provide the same designator for multiple power nets, they will be automatically interconnected in the design. Key properties include:
  • "Exclude from BOM": A Boolean attribute, set to true in this project, which denotes the exclusion of the power net portal's details from the Bill of Materials (BOM) for the project.
  • "Exclude from PCB": Another Boolean attribute, set to true here, which denotes that the power net portal's details are not to be included in the Printed Circuit Board (PCB) layout.
  • "Designator Prefix": It is given as 'PowerNet' in this project and indicates the prefix used for the component's designated label/ID.
Currently, there's one component in the project, labeled as 'P1'. The properties of this component are yet to be fully specified, which is why details like Pin Type, Pin Number, and Terminal Order are left blank. The symbol pin's position is shown as an object, which suggests that specific coordinates are to be assigned. No electrical connections have been made in the project yet.
Please feel free to add more components, specify the component properties, and make necessary electrical connections.
2y
Someone is typing...
2
AYUDAME A UNIR Y A ARMAR EL CIRCUITO ELEVADOR DE OCTAVA

@copilot AYUDAME A UNIR Y A ARMAR EL CIRCUITO ELEVADOR DE OCTAVA
1y
Por supuesto, puedo ayudarte a diseñar un circuito elevador de octava. Para clarificar, un "circuito elevador de octava" se refiere a una configuración electrónica que toma una señal de audio y altera su frecuencia para sonar una octava más alta. Este tipo de procesamiento de audio es útil en aplicaciones musicales y de síntesis de sonido.
Para construir un circuito elevador de octava, podrías considerar usar un multiplicador de frecuencia. Algunos pasos y componentes que podríamos considerar en el diseño son:
  1. Rectificador de diodo: Utilizar un puente rectificador para crear una señal de corriente continua a partir de la señal alterna original.
  2. Oscilador de cristal o PLL (Phase-Locked Loop): Utilizado para controlar y estabilizar la frecuencia de salida.
  3. Filtro de paso bajo: Para eliminar las frecuencias altas no deseadas generadas durante el proceso de duplicación.
  4. Amplificador operacional (Op-Amp): Para amplificar y acondicionar la señal.
Si te parece bien, podemos detallar cada parte del circuito con componentes específicos. ¿Tienes algunos componentes en mente o una fuente de alimentación específica que te gustaría utilizar?
1y
Someone is typing...
7
P1


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

Power Net Portal

Power Net Portal
Description

Created
Last updated by jharwinbarrozo
3 Contributor(s)
jharwinbarrozo
mohamediliyas
gjghj

Controls

Properties

System Architecture
graph LR V5["5 V Supply"] --> Divider["LDR07 + 10 kΩ Divider"] Divider --> Base["Transistor Base (2N2222A)"] V5 --> Rlim["220 Ω Limiting Resistor"] --> LED["5 mm LED"] --> Collector["Transistor Collector"] Collector --> Emitter["Transistor Emitter"] --> GND["GND"]
Part Type
Portal
Exclude from PCB
true
Exclude from BOM
true
System Architecture
graph LR subgraph Sensors Smoke["Photoelectric Smoke Sensor"] Heat["Thermal Sensor"] end subgraph Processing MCU["Microcontroller/SoC"] end subgraph Connectivity GNSS["GNSS Module"] Comm["Cellular/Wi-Fi Modem"] end subgraph Interface UI["User Interface\n(Address Input / LEDs / Buzzer)"] Ping["Ping/Alert System"] end subgraph Communication Cloud["Cloud/API\n(Google Maps Alerts)"] Emergency["Emergency Call\n(911)"] end subgraph Power Power["Power Management\n(Battery / Charger / DC/DC Converters)"] end Smoke --> MCU Heat --> MCU MCU --> GNSS MCU --> Comm MCU --> UI MCU --> Ping Comm --> Cloud Comm --> Emergency Power --> Smoke Power --> Heat Power --> MCU Power --> GNSS Power --> Comm Power --> UI
Designator Prefix
PowerNet

Availability & Pricing

DistributorQty 1
Arrow$112.75–$116.07
Digi-Key$151.69–$195.98
LCSC$205.17–$207.06
Mouser$189.22–$191.93
TME$0.12–$1.22
Verical$19.64–$37.61

Assets