Chat

Welcome to Flux

Treat Flux like your intern. Tell it what you'd like to build and it'll get to work. You can also ask it questions, brainstorm ideas, and teach it your preferences. Learn More

Design a blinking LED circuit
Read a datasheet
Design a block diagram
Find parts in the library
Help me brainstorm ideas

Ready.


Validate the the suggested architecture in the block diagram matches the product...

1y
Based on the provided block diagram and the project requirements, here's an assessment of whether it meets the product specifications:
Matched Requirements:
  1. Operating Voltage (+12V or +5V)
    • Boost Converter & Switch: Allow selecting between +12V or +5V, satisfying voltage requirements.
  2. Power Requirements (Solar Recharge)
    • Solar Panel (4V - 6V): Provides energy for recharge.
    • Battery Charging IC: Manages solar-based charging, aligning with the daily solar recharge requirement.
    • Battery (LiPo): Assumes adequacy for a 5-year operation with daily recharge.
  3. Connectivity (LoRa, RS485)
    • LoRa Module: Present for LoRa communication.
    • MAX3485: Used for RS485 communication.
  4. Connectors (I2C, RS485, UART)
    • Marked in the block diagram.
  5. Indicators
    • TX/RX LEDs: Indicators for communication.
Potential Gaps or Missing Blocks:
  1. Compliance with ISO-14001, IEC-61000-4, IEC-62133
    • No explicit mention or block indicating compliance measures, especially EMC protection.
    • Consider adding Filter Circuits and Shielding to meet EMC standards.
  2. Operating Temperature Range (-20°C to 70°C)
    • Need appropriate thermal management, but no block explicitly addresses this (e.g., Temperature Sensors or Heatsinks).
  3. Battery and Solar Power Backup Duration
    • It’s assumed the battery and charging systems meet a 5-year lifecycle, but verification of battery capacity and charging efficiency is essential.
  4. ESD Protection
    • Some ESD protections are shown, but ensure all connectors and critical ICs are covered.
  5. Enhanced Power Management
    • Power Management IC (PMIC): Consider adding for smart power distribution and conservation in off-grid scenarios.
  6. Firmware Update Mechanism
    • Not shown but could be critical for long-term deployments. Implement a method for OTA (Over-The-Air) updates.
By addressing these potential gaps, the design will be better positioned to meet all stated requirements and improve reliability and compliance standards.
1y
use mermaid formatted block diagrams to generate an updated architecture design with any recommended updates
1y
Here's an updated architecture design using the mermaid syntax. The diagram incorporates additional blocks and components to address the gaps identified in the previous assessment:

Image


PowerManagement
Compliance
$+12V/+5V$
ESD1
ESD1
ESD2
Filter
Temp
FW
Power Management IC
Filter Circuits
Temperature Sensors/Heatsinks
Solar Panel $4V - node_6V$
Battery $LiPo$
Boost Converter
Switch ($+12V/+5V)$
Battery Protection IC
Battery Charging IC
Voltage Regulator Circuit
MCU
LoRa Module
MAX3485 $RS485$
Connectors $I2C, RS485, UART$
USB
ESD Protection
ESD Protection
TX/RX LED Indicators
OTA Firmware Update
Updates Made:
  • Filter Circuits: Added for EMC compliance.
  • Temperature Sensors/Heatsinks: Included for managing the operating temperature range.
  • Power Management IC: Introduced to enhance power efficiency and management strategies.
  • OTA Firmware Update Block: Added for maintaining and updating firmware remotely.
  • ESD Protection: Ensured coverage for highlighted critical components.
This revised architecture should better address the original requirements and enhance the design's overall functionality and compliance.
1y


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

[Demo] Architecture Validation

[Demo] Architecture Validation
Description

Created
Last updated by collinsemasi
1 Contributor(s)
collinsemasi

Controls

Properties

Operating Voltage
+12V or +5V selectable via a switch
Compliance
ISO-14001, IEC-61000-4, IEC-62133
Power Requirements
5-year operation with daily solar recharge
Connectivity
LoRa, RS485
Operating Temperature
-20°C to 70°C

Availability & Pricing

DistributorQty 1

Assets