Chat

Welcome to Flux

Treat Flux like your intern. Tell it what you'd like to build and it'll get to work. You can also ask it questions, brainstorm ideas, and teach it your preferences. Learn More

Explain project
Write a project description
Find schematic issues
Create a test plan
Operating conditions
Verify Part Details
Part Specifications
Recommend similar parts

Ready.


give me sample schematic for this component

@copilot give me sample schematic for this component
1y
Sure, let's develop a basic schematic to interface the NAND Flash Memory IC (MT29F4G08ABADAWP:D). It's a 4 Gbit NAND Flash memory with a parallel interface and 48 TSOP I package, typical for storage applications in embedded systems.
Let's assume you're connecting this memory IC to a microcontroller. We'll define the connections as follows:
Connections
  1. Power Pins:
    • Connect VCC_1:pin to 3.3V (or required supply voltage).
    • Connect VCC_1_1:pin to 3.3V.
    • Connect VCC_1_2:pin to 3.3V.
    • Connect VCC_2:pin to 3.3V.
    • Connect VSS_1:pin to GND.
    • Connect VSS_1_1:pin to GND.
    • Connect VSS_1_2:pin to GND.
    • Connect VSS_2:pin to GND.
  2. Data I/O Pins:
    • Connect I/O0:pin to the microcontroller's data bus bit 0.
    • Connect I/O1:pin to the microcontroller's data bus bit 1.
    • Connect I/O2:pin to the microcontroller's data bus bit 2.
    • Connect I/O3:pin to the microcontroller's data bus bit 3.
    • Connect I/O4:pin to the microcontroller's data bus bit 4.
    • Connect I/O5:pin to the microcontroller's data bus bit 5.
    • Connect I/O6:pin to the microcontroller's data bus bit 6.
    • Connect I/O7:pin to the microcontroller's data bus bit 7.
  3. Control Pins:
    • Connect CE#:pin to the microcontroller's chip enable pin.
    • Connect RE#:pin to the microcontroller's read enable pin.
    • Connect WE#:pin to the microcontroller's write enable pin.
    • Connect ALE:pin to the microcontroller's address latch enable pin.
    • Connect CLE:pin to the microcontroller's command latch enable pin.
    • Connect WP#:pin to the microcontroller's write protect pin (optional, if supported/enabled).
  4. Status Pins:
    • Connect R/B#:pin to a GPIO pin on the microcontroller to monitor the ready/busy status.
  5. Unused Pins:
    • The NC (No Connect) and DNU (Do Not Use) pins should remain unconnected.
    • NC pins: NC1,NC2,NC3,NC4,NC5,NC6,NC7,NC8,NC9,NC10,NC11,NC12,NC13,NC14,NC15,NC16,NC17,NC18,NC19,NC20NC_1, NC_2, NC_3, NC_4, NC_5, NC_6, NC_7, NC_8, NC_9, NC_10, NC_11, NC_12, NC_13, NC_14, NC_15, NC_16, NC_17, NC_18, NC_19, NC_20.
    • DNU pins: DNU1,DNU2DNU1, DNU2.
    • Optional: R/B2#3, CE2#3 can remain unconnected until required for multi-chip setups.
Sample Schematic in Text Format
  1. Power Connections:
    • Connect VCC_1 to 3.3V.
    • Connect VCC_1_1 to 3.3V.
    • Connect VCC_1_2 to 3.3V.
    • Connect VCC_2 to 3.3V.
    • Connect VSS_1 to GND.
    • Connect VSS_1_1 to GND.
    • Connect VSS_1_2 to GND.
    • Connect VSS_2 to GND.
  2. Data Connections:
    • Connect I/O0 to MCU data bus bit 0 ((MCU:D0)).
    • Connect I/O1 to MCU data bus bit 1 ((MCU:D1)).
    • Connect I/O2 to MCU data bus bit 2 ((MCU:D2)).
    • Connect I/O3 to MCU data bus bit 3 ((MCU:D3)).
    • Connect I/O4 to MCU data bus bit 4 ((MCU:D4)).
    • Connect I/O5 to MCU data bus bit 5 ((MCU:D5)).
    • Connect I/O6 to MCU data bus bit 6 ((MCU:D6)).
    • Connect I/O7 to MCU data bus bit 7 ((MCU:D7)).
  3. Control Connections:
    • Connect CE# to MCU:CE.
    • Connect RE# to MCU:RE.
    • Connect WE# to MCU:WE.
    • Connect ALE to MCU:ALE.
    • Connect CLE to MCU:CLE.
    • Connect WP# to MCU:WP ((optional)).
  4. Status Connections:
    • Connect R/B# to MCU status GPIO ((MCU:STATUS)).
Remember to use proper decoupling capacitors close to the power pins of the IC for stability.
Would you like a visual representation or any further details on this?
1y
create the schematic for me
1y
Creating a full visual schematic within the text environment isn't possible directly, but I can provide you with a structured list of the parts and their connections that you can easily input into Flux.
Schematic Connections in Text Format Power Connections
  • Connect VCC_1:pinVCC\_1:pin to 3.3V.
  • Connect VCC_1_1:pinVCC\_1\_1:pin to 3.3V.
  • Connect VCC_1_2:pinVCC\_1\_2:pin to 3.3V.
  • Connect VCC_2:pinVCC\_2:pin to 3.3V.
  • Connect VSS_1:pinVSS\_1:pin to GND.
  • Connect VSS_1_1:pinVSS\_1\_1:pin to GND.
  • Connect VSS_1_2:pinVSS\_1\_2:pin to GND.
  • Connect VSS_2:pinVSS\_2:pin to GND.
Data Connections
  • Connect I/O0:pinI/O0:pin to MCU:D0.
  • Connect I/O1:pinI/O1:pin to MCU:D1.
  • Connect I/O2:pinI/O2:pin to MCU:D2.
  • Connect I/O3:pinI/O3:pin to MCU:D3.
  • Connect I/O4:pinI/O4:pin to MCU:D4.
  • Connect I/O5:pinI/O5:pin to MCU:D5.
  • Connect I/O6:pinI/O6:pin to MCU:D6.
  • Connect I/O7:pinI/O7:pin to MCU:D7.
Control Connections
  • Connect CE#:pinCE\#:pin to MCU:CE.
  • Connect RE#:pinRE\#:pin to MCU:RE.
  • Connect WE#:pinWE\#:pin to MCU:WE.
  • Connect ALE:pinALE:pin to MCU:ALE.
  • Connect CLE:pinCLE:pin to MCU:CLE.
  • Connect WP#:pinWP\#:pin to MCU:WP$($optional$)$.
Status Connections
  • Connect R/B#:pinR/B\#:pin to MCU:STATUS.
Ensure that all unused pins (NC and DNU) are left unconnected.
I will now generate a schematic diagram for you based on these connections. Please note that it will be in image form and you'll be able to view it directly. Let's proceed with creating the schematic image.
Code Interpreter

Python


import matplotlib.pyplot as plt
import networkx as nx

# Create a directed graph
G = nx.DiGraph()

# Add nodes for memory IC, MCU, and power sources
G.add_node('MT29F4G08ABADAWP:D', pos=(0, 0))
G.add_node('MCU', pos=(3, 0))

# Add power source nodes
G.add_node('3.3V', pos=(-1, 1))
G.add_node('GND', pos=(-1, -1))

# Define power and ground connections
power_connections = [
    ('3.3V', 'VCC_1'),
    ('3.3V', 'VCC_1_1'),
    ('3.3V', 'VCC_1_2'),
    ('3.3V', 'VCC_2'),
    ('GND', 'VSS_1'),
    ('GND', 'VSS_1_1'),
    ('GND', 'VSS_1_2'),
    ('GND', 'VSS_2')
]

# Define data connections
data_connections = [
    ('PMCU:D0', 'I/O0'),
    ('PMCU:D1', 'I/O1'),
    ('PMCU:D2', 'I/O2'),
    ('PMCU:D3', 'I/O3'),
    ('PMCU:D4', 'I/O4'),
    ('PMCU:D5', 'I/O5'),
    ('PMCU:D6', 'I/O6'),
    ('PMCU:D7', 'I/O7')
]

# Define control connections
control_connections = [
    ('PMCU:CE', 'CE#'),
    ('PMCU:RE', 'RE#'),
    ('PMCU:WE', 'WE#'),
    ('PMCU:ALE', 'ALE'),
    ('PMCU:CLE', 'CLE'),
    ('PMCU:WP', 'WP#')  # optional
]

# Define status connections
status_connections = [
    ('PMCU:STATUS', 'R/B#')
]

# Add edges for power connections
for source, target in power_connections:
    G.add_edge(source, 'MT29F4G08ABADAWP:D', label=target)

# Add edges for data connections
for source, target in data_connections:
    G.add_edge('MCU', 'MT29F4G08ABADAWP:D', label=f'{source}-{target}')

# Add edges for control connections
for source, target in control_connections:
    G.add_edge('MCU', 'MT29F4G08ABADAWP:D', label=f'{source}-{target}')

# Add edges for status connections
for source, target in status_connections:
    G.add_edge('MCU', 'MT29F4G08ABADAWP:D', label=f'{source}-{target}')

# Get positions
pos = nx.get_node_attributes(G, 'pos')

# Draw the graph
plt.figure(figsize=(12, 8))
nx.draw(G, pos, with_labels=True, node_size=3000, node_shape='s', node_color='lightblue', font_size=10, font_weight='bold', arrowsize=20)
nx.draw_networkx_edge_labels(G, pos, edge_labels={(u, v): d['label'] for u, v, d in G.edges(data=True)}, font_size=8, font_color='red')
plt.title('MT29F4G08ABADAWP:D NAND Flash Memory Schematic')
plt.show()
Schematic Image Placeholder

Image

Here is a simplified schematic visualization for your MT29F4G08ABADAWP:D NAND Flash Memory IC connected to a Microcontroller (MCU):
  • Power Connections:
    • Connect 3.3V to VCC_1, VCC_1_1, VCC_1_2, VCC_2.
    • Connect GND to VSS_1, VSS_1_1, VSS_1_2, VSS_2.
  • Data Connections:
    • Connect MCU:D0 to I/O0:pin.
    • Connect MCU:D1 to I/O1:pin.
    • Connect MCU:D2 to I/O2:pin.
    • Connect MCU:D3 to I/O3:pin.
    • Connect MCU:D4 to I/O4:pin.
    • Connect MCU:D5 to I/O5:pin.
    • Connect MCU:D6 to I/O6:pin.
    • Connect MCU:D7 to I/O7:pin.
  • Control Connections:
    • Connect MCU:CE to CE#:pin.
    • Connect MCU:RE to RE#:pin.
    • Connect MCU:WE to WE#:pin.
    • Connect MCU:ALE to ALE:pin.
    • Connect MCU:CLE to CLE:pin.
    • Connect MCU:WP to WP#:pin $($optional$)$.
  • Status Connection:
    • Connect MCU:STATUS to R/B#:pin.
Important supplementary notes:
  • Unused Pins: Make sure that all NC (No Connect) and DNU (Do Not Use) pins are left unconnected.
You can now transfer these connections into your design in Flux. If you need a more detailed and precise layout, Flux's tools should allow you to easily assign and connect all the appropriate pins based on the information provided. If you have any further specifications or need additional components connected, let me know!
1y
Someone is typing...
I/O6
VCC_1
NC_16
I/O2
I/O7
CE#
NC_3
NC_2
DNU2
I/O5
CLE
VCC_1_1
R/B#
I/O1
R/B2#3
NC_7
NC_6
VSS_1_2
NC_5
DNU_2
VCC_2
NC_18
VCC_1_2
ALE
I/O3
RE#
WE#
VSS_1
I/O4
NC_19
NC_17
NC_1
NC_8
WP#
CE2#3
VSS_2
NC_4
NC_20


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

MT29F4G08ABADAWP:D

MT29F4G08ABADAWP:D
Description

Created
Last updated by adrian95
1 Contributor(s)
adrian95

Controls

Properties

Manufacturer Part Number
MT29F4G08ABADAWP:D
Manufacturer Name
Designator Prefix
IC
Part Type
Integrated Circuit

Availability & Pricing

DPNStockQty 1
10$5.56
1878$5.13
1377$3.5344
1999$6.01
95–1K$3.40–$6.4715

Assets