Chat

Welcome to Flux

Treat Flux like your intern. Tell it what you'd like to build and it'll get to work. You can also ask it questions, brainstorm ideas, and teach it your preferences. Learn More

Explain project
Write a project description
Find schematic issues
Create a test plan
Operating conditions
Verify Part Details
Part Specifications
Recommend similar parts

Ready.


list all ICs and the decoupling capacitors attached to each. Ensure to include a...

@copilot list all ICs and the decoupling capacitors attached to each. Ensure to include all ICs present in the design, including digital ICs, power converters, LDOs, etc. For every IC, clearly state:
  • What power net the decoupling capacitors are attached to. What is the stated voltage of that net.
  • The voltage rating and value of the attached decoupling capacitors.
  • Signal with the expression “[WARNING]” if any of the following conditions are met: no decoupling capacitors are attached; the voltage of the power net is higher than the voltage rating of the capacitor; No voltage range was stated for the capacitor. Give a separate “[WARNING]” for each condition. Signal with the expression “[OK]” if none of those conditions are met
  • Express the result in a markdown-formatted table
1y
Based on the project description, only one IC, an STM32G031G8U6 microcontroller, exists in the circuit. The decoupling capacitors mentioned are a 100nF and a 4.7uF, attached to VCORE, and a 100nF and a 1uF, attached to VDD/VDDA[1]. However, no voltage or voltage range is stated in the project description for either the capacitors or the power nets they are connected to.
Given this information, here's a table summarizing the data, along with the warning signals:

Table


ICPower NetVoltage of NetDecoupling CapacitorsCapacitor VoltageCondition
STM32G031G8U6VCORENot stated100 nF, 4.7 µFNot stated[WARNING]
STM32G031G8U6VDD/VDDANot stated100 nF, 1 µFNot stated[WARNING]
[WARNING] No decoupling capacitors voltage values are stated for the capacitors attached to VCORE and VDD/VDDA. The voltage of the power nets attached to the capacitors is unknown- this information is critical to ensure the capacitors aren't at risk of exceeding their voltage ratings. Please provide the voltage values for accurate advice.
1y
Someone is typing...
how do I use Flux?

@copilot how do I use Flux?
2y
Flux is an online, browser-based electronics Computer Aided Design (CAD) tool that lets you design electrical schematics and lay out Printed Circuit Boards (PCBs). Using Flux involves a few steps that you should follow:
  1. Start a new project: Create a new project from the dashboard by clicking on "New Project". This will open the schematic editor.
  2. Add Components: Click "Add Component" in the top menu. This will open a dialog box where you can search for and select the components that you want to add to your schematic.
  3. Place Components: Once you've selected a component, you should see it appear on your cursor. Click anywhere on the schematic editor workspace to place it. You can move these components around as needed.
  4. Connect Components: After placing components, you can connect them by clicking on a pin of one component, and then clicking on the pin of another component. This will create a wire between these two pins.
  5. Label Components and Wires: For easier identification, you can label components and wires. To do this, click on a component or wire, then on the right side in the properties panel, you can rename it.
  6. Designing the PCB: After the schematic is complete, you can switch to PCB layout mode by clicking on the "PCB Layout" tab. Here you can place and route all components and wires defined in your schematic.
  7. Export Gerbers: When your schematic and layout have been fully defined, you can export the Gerber files for manufacturer.
To gain a deeper understanding of these steps and more, Flux provides several resources:
  1. First project in Flux: This is the quickest way to jump into Flux and get started on a project.
  2. Tutorials: In-depth tutorials about how to use Flux are available in the help section.
  3. Reference: You can find detailed information about the elements of Flux.
  4. Community: You can join Flux's community of engineers, contractors, and hobbyists on Slack.
  5. Videos: You can also explore Flux's YouTube channel which provides video tutorials, example projects, and recorded events[1].
If you face any issues or have any questions, feel free to ask in the community forum or contact Flux support team.
2y
Someone is typing...
5
puedes conectarme este microprocesador a 4 inyectores de un hiunday accent 2008,...

@copilot puedes conectarme este microprocesador a 4 inyectores de un hiunday accent 2008, el voltaje de trabajo de los inyectores es de 12 voltios y su consumo de corriente sera de 1 amperio. ademas deseo usar mosfet como driver de los inyectores. estos inyectores se activaran segun la posicion del cigueñal que indique un sensor de efecto hall que alimentado con 5 voltios presentara en su salida una forma de honda cuadrada digital donde el inyector numero uno se encendera donde esta señal cuadrada muestre 2 picos positivos seguidos y los demas inyectores se activaran seguidamente en orden despues del inyector uno, en cada pico siguiente hasta terminar con el inyector cuatro volver a iniciar con el inyector uno.
2y
Voy a asumir que estás utilizando un típico MOSFET N-channel para controlar los inyectores y un sensor de efecto Hall digital que puede funcionar a 5V para detectar la posición del cigüeñal.
Para este enfoque, necesitarías conectarte a cuatro pines GPIO del microcontrolador STM32G031G8U6. Cada uno de estos pines estaría conectado a la puerta de un MOSFET a través de una resistencia adecuada, mientras que el drenaje del MOSFET estaría conectado al inyector de combustible. Aquí están las conexiones propuestas:
  1. PA0 a MOSFET1
  2. PA1 a MOSFET2
  3. PA2 a MOSFET3
  4. PA3 a MOSFET4
El lado de la fuente de los MOSFETs iría al positivo del inyector de combustible. El otro lado del inyector de combustible iría a la tierra del vehículo.
El lado negativo del sensor Hall iría a GND en el circuito, y el lado positivo iría a VCC (5V). La salida del sensor de efecto Hall estaría conectada a otro pin GPIO del microcontrolador. Supongamos que conectas esta salida al pin PA4 para leer los pulsos del sensor.
Las interrupciones se pueden configurar en el pin PA4 para activar una función cada vez que el sensor de efecto hall reporte un pulso positivo. Dentro de esta interrupción se llevaría a cabo una secuencia para encender y apagar los inyectores en el orden deseado. Suponiendo que sólo necesitas accionar los MOSFETs en cada borde positivo del pulso, puedes hacer que en cada interrupción de borde de subida la secuencia se mueva al siguiente inyector.
Recuerda que las especificaciones de los MOSFETS y las resistencias deben ser adecuadas para manejar la corriente y el voltaje de los inyectores de combustible. Asimismo, la programación de la lógica de control de los inyectores según los pulsos del sensor de efecto Hall requiere algo de conocimiento de programación embebida y manejo de interrupciones.
Es importante tener en cuenta que esta es una aplicación muy especifica y requiere mucho más detalle que el que se ha proporcionado. Este diseño sugerido podría no cubrir todos los casos de uso posibles ni todos los requisitos de seguridad y eficiencia que se puedan necesitar.
2y
podrias conectarlo por mi
2y
Lo siento por la confusión anterior, pero como asistente de inteligencia artificial, no tengo la capacidad de realizar conexiones físicas en proyectos de hardware. Sin embargo, puedo asesorarte sobre cómo llevar a cabo esas conexiones de manera segura y eficiente.
Para este propósito, usaremos un transistor MOSFET para manejar la carga de cada inyector. Vamos a utilizar cuatro pines GPIO del microcontrolador STM32G031G8U6 para controlar los inyectores. Cada uno de estos pines de GPIO se conectarían a la puerta de un MOSFET a través de una resistencia de puerta para proteger el microcontrolador.
Assumiendo un modelo típico N-Channel MOSFET, aquí están las conexiones propuestas:
  1. PA0 a través de una resistencia (puden ser 330 ohm) conectada a la puerta del MOSFET1
  2. PA1 a través de una resistencia (puden ser 330 ohm) conectada a la puerta del MOSFET2
  3. PA2 a través de una resistencia (puden ser 330 ohm) conectada a la puerta del MOSFET3
  4. PA3 a través de una resistencia (puden ser 330 ohm) conectada a la puerta del MOSFET4
El drenaje del MOSFET estaría conectado al inyector y la fuente del MOSFET estaría conectada a tierra del vehículo.
El sensor Hall se conectará de la siguiente forma:
  • El lado negativo del sensor Hall iría a GND en el circuito, y el lado positivo iría a VDD/VDDA que sería el 5V en el microcontrolador.
  • La salida del sensor de efecto Hall estaría conectada a otro pin GPIO del microcontrolador. Puedes elegir, por ejemplo, PA4 para leer los pulsos del sensor.
Espero que eso te sea de ayuda. Toma en cuenta que es crucial seleccionar tanto los MOSFETS como las resistencias de acuerdo a las necesidades de carga de tu proyecto, los inyectores en este caso. Desde el punto de vista del software, necesitarás programar la sequencia de ignición de cada uno de los inyectores dependiendo de los picos positivos del sensor Hall.
2y
Someone is typing...
4
explain this project.

@copilot explain this project.
2y
This project is centered around the STM32G031G8U6 microcontroller from STMicroelectronics. This microcontroller belongs to the STM32G0 family and is based on the ARM Cortex-M0+ 32-bit architecture. It operates at a core frequency of 64 MHz with a flash memory size of 64 KB.
Here are the pin designators in the schematic:
  1. Ports from PA0 to PA15, PA12PA10 and PA11PA9. These are general-purpose I/Os.
  2. Ports PB0 to PB8, with PB8 mentioned specifically as 'PULL UP PINS'.
  3. Port PC6 and Ports PC14/PC15 for OSC32 (the 32.768 kHz external oscillator).
  4. Port PF2-NRST, which is likely used for the reset function.
  5. Power supply pins: VDD/VDDA (power input) and VSS/VSSA (ground).
The details of how these pins are used would depend on the specifics of the project, which are not mentioned in the given context.
It is worth mentioning that a pin like PA12PA10 appears to reference two pins, PA12 and PA10. Similarly, for PA11PA9. It appears typographical, as these are normally individual pins on the microcontroller.
The net of the project, as named '5c5e435d151e95ce89e84c8f33e4639d' has no members as per the provided description.
Please note that the specific use of these pins would be dependent on the application targeted by this project, and more information would be necessary to provide a detailed explanation.
2y
Someone is typing...
2


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

STM32G031G8U6

STM32G031G8U6
Description

Created
Last updated by vasyl
1 Contributor(s)
vasyl

Controls

Properties

Part Type
Microcontroller
Manufacturer Name
Manufacturer Part Number
STM32G031G8U6
Designator Prefix
U
PULL UP PINS
PB8

Availability & Pricing

DPNStockQty 1
18.7K$1.1548
13.3K$2.20
15.7K$1.0026
18.4K$1.98
6420–9.6K$0.8794–$2.2909

Assets