• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
VLED+
VDD
SCL
SDA
PGND
NC
R_DRV
IR_DRV
GND
NC
VLED+
NC
~INT
NC

MAX30102EFD+T

MAX30102EFD+T
Description

Created
February 18th 2022
Last updated by vasy_skral
a month ago
1 Contributor(s)
vasy_skral

Controls

Properties

Part Type
Integrated Circuit
Manufacturer Name
Manufacturer Part Number
MAX30102EFD+T
Designator Prefix
U
Symbol Style
Parametric

Availability & Pricing

DPNStockQty 1
35K–6.1K$6.7625–$10.77
16.8K$13.11
140$8.2424

Assets

Simulation

µs

Simulation Speed

blue color capacitor i need
@copilot blue color capacitor i need
8mo
To select a capacitor for your MAX30102EFD+T based project, primarily as a bypass capacitor for the VLED+ pins as mentioned in the excerpts, you'll need a capacitor that matches your voltage requirements and the necessary capacitance to provide stable power supply performance. While the color of a capacitor typically refers to its dielectric type in the context of ceramic capacitors, for your application concerning bypass purposes, the color might be less relevant compared to the electrical characteristics required.
For the VLED+ pins (PIN 9 and PIN 10) of the MAX30102EFD+T, the excerpts suggest using a bypass capacitor connected to PGND for best performance. Though the datasheet excerpts do not specify the exact value of the capacitors needed, a common practice is to use capacitors in the range of 0.1μF0.1\mu F to 10μF10\mu F for bypassing, depending on the application's specific needs such as the operational frequency and the power supply's stability requirements.
Given typical applications and considering the MAX30102EFD+T:
  • Capacitance Value: For digital circuits like this, 0.1μF0.1\mu F (100nF100nF) is a standard value for bypass capacitors to filter out high-frequency noise. Additionally, considering the suggestion about bus capacitance being up to 400pF400pF, a higher capacitance value like 1μF1\mu F might also be beneficial for stability, especially if longer traces or external interfacing might introduce additional capacitance or noise.
  • Voltage Rating: Ensure the voltage rating of the capacitor is at least 25% higher than the maximum voltage you expect to appear across it. If VLED+ operates at 5V5V, a voltage rating of at least 6.25V6.25V is recommended, though 10V10V is a common and safer choice.
  • Type and Color: Assuming you prefer a blue color capacitor for aesthetic or identification purposes, you might be looking at ceramic capacitors, which commonly come in blue among other colors. The color, however, is more about the manufacturer's choice and doesn't impact the electrical performance. Ensure the dielectric and other specifications meet your requirements rather than focusing on color.
So, for your project, you might look for:
  • Ceramic Capacitor
  • Capacitance: 0.1μF0.1\mu F to 1μF1\mu F
  • Voltage Rating: ≥10V10V
  • Case Package: Suitable for your layout and size requirements.
Remember, the compatibility with your circuit's operational parameters is paramount. The physical characteristics, like color, should be secondary to selecting the right component for proper functionality. If you need capacitors specifically for aesthetic reasons, you might have to search through specific suppliers or manufacturers who offer capacitors in the color you desire.
8mo
que componentes hay en este circuito#include "ssd1306h.h" \#include "MAX30102.h"...
que componentes hay en este circuito#include "ssd1306h.h" #include "MAX30102.h" #include "Pulse.h" #include #include #include
#ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif #ifndef sbi #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #endif
SSD1306 oled; MAX30102 sensor; Pulse pulseIR; Pulse pulseRed; MAFilter bpm;
#define LED LED_BUILTIN #define BUTTON 3 #define OPTIONS 7
static const uint8_t heart_bits[] PROMEDIO = { 0x00, 0x00, 0x38, 0x38, 0x7c, 0x7c, 0xfe, 0xfe, 0xfe, 0xff, 0xfe, 0xff, 0xfc, 0x7f, 0xf8, 0x3f, 0xf0, 0x1f, 0xe0, 0x0f, 0xc0, 0x07, 0x80, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
//spo2_table is approximated as -45.060ratioAverage ratioAverage + 30.354 *ratioAverage + 94.845 ; const uint8_t spo2_table[184] PROMEDIO = { 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, 80, 80, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 69, 69, 68, 67, 66, 66, 65, 64, 63, 62, 62, 61, 60, 59, 58, 57, 56, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 6, 5, 3, 2, 1 } ;
int getVCC() { //lee la refertencia interna 1V1 contra VCC #if defined(
return (((long)1024 * 1100) / val)/100;
}
void print_digit(int x, int y, long val, char c=' ', uint8_t field = 3,const int BIG = 2) {
uint8_t ff = field; do { char ch = (val!=0) ? val%10+'0': c; oled.drawChar( x+BIG*(ff-1)*6, y, ch, BIG); val = val/10; --ff; } while (ff>0); }
/*
  • Record, scale and display PPG Wavefoem */ const uint8_t MAXWAVE = 72;
class Waveform { public: Waveform(void) {wavep = 0;}
  void record(int waveval) {
    waveval = waveval/8;         // scale to fit in byte  
    waveval += 128;              //shift so entired waveform is +ve  
    waveval = waveval<0? 0 : waveval;
    waveform[wavep] = (uint8_t) (waveval>255)?255:waveval; 
    wavep = (wavep+1) % MAXWAVE;
  }

  void scale() {
    uint8_t maxw = 0;
    uint8_t minw = 255;
    for (int i=0; imaxw?waveform[i]:maxw;
      minw = waveform[i]y) {
    for (uint8_t iy = y+1; iyy为真则返回x,如果为假则返回y,之后=赋值给z。相当于:if(x>y)z=x;elsez=y
    delay(200);
    ++sleep_counter;
    if (sleep_counter>100) {
      go_sleep(); 
      sleep_counter = 0;
    }
} else {
    sleep_counter = 0;
    // remove DC element移除直流元件
    int16_t IR_signal, Red_signal;
    bool beatRed, beatIR;
    if (!filter_for_graph) {//图形过滤器
       IR_signal =  pulseIR.dc_filter(irValue) ;
       Red_signal = pulseRed.dc_filter(redValue);
       beatRed = pulseRed.isBeat(pulseRed.ma_filter(Red_signal));
       beatIR =  pulseIR.isBeat(pulseIR.ma_filter(IR_signal));        
    } else {
       IR_signal =  pulseIR.ma_filter(pulseIR.dc_filter(irValue)) ;
       Red_signal = pulseRed.ma_filter(pulseRed.dc_filter(redValue));
       beatRed = pulseRed.isBeat(Red_signal);
       beatIR =  pulseIR.isBeat(IR_signal);
    }
    // invert waveform to get classical BP waveshape
    wave.record(draw_Red ? -Red_signal : -IR_signal ); 
    // check IR or Red for heartbeat     
    if (draw_Red ? beatRed : beatIR){
        long btpm = 60000/(now - lastBeat);
        if (btpm > 0 &amp;&amp; btpm < 200) beatAvg = bpm.filter((int16_t)btpm);
        lastBeat = now; 
        digitalWrite(LED, HIGH); 
        led_on = true;
        // compute SpO2 ratio
        long numerator   = (pulseRed.avgAC() * pulseIR.avgDC())/256;
        long denominator = (pulseRed.avgDC() * pulseIR.avgAC())/256;
        int RX100 = (denominator>0) ? (numerator * 100)/denominator : 999;
        // using formula
        SPO2f = (10400 - RX100*17+50)/100;  
        // from table
        if ((RX100>=0) &amp;&amp; (RX100<184))
          SPO2 = pgm_read_byte_near(&amp;spo2_table[RX100]);
    }
    // update display every 50 ms if fingerdown
    if (now-displaytime>50) {
        displaytime = now;
        wave.scale();
        draw_oled(2);
        
    }
    Display_5();


}
// flash led for 25 ms
if (led_on &amp;&amp; (now - lastBeat)>25){
    digitalWrite(LED, LOW);
    led_on = false;
 }
}
9mo
El código proporcionado es para un proyecto de hardware que utiliza una serie de componentes electrónicos y bibliotecas de software para medir la tasa de pulso y la saturación de oxígeno en sangre (SpO2) usando un sensor MAX30102. Aquí está la lista de los componentes principales basada en el código:
Componentes de Hardware:
  1. SSD1306: Un controlador de pantalla OLED utilizado para mostrar los resultados de las mediciones. Se comunica a través de I2C o SPI con el microcontrolador.
  2. MAX30102: Sensor óptico utilizado para medir la tasa de pulso y SpO2. Utiliza LEDs rojos e infrarrojos para penetrar la piel y detectar cambios en la absorción de color debido a las pulsaciones.
  3. Botones: Utilizados para navegar por las opciones del menú o activar/desactivar ciertas funciones en el dispositivo.
  4. EEPROM Interna: Memoria utilizada para almacenar configuraciones persistentes como opciones de visualización de gráficos o color de onda seleccionado.
  5. Microcontrolador AVR: Basado en la inclusión de bibliotecas específicas de AVR (y), el proyecto se compila presumiblemente para un microcontrolador AVR, que controla todas las operaciones y comunicaciones entre componentes.
Componentes de Software y Características:
  • Bibliotecas Propias:
    • ssd1306h.h: Biblioteca para controlar la pantalla OLED usando el controlador SSD1306.
    • MAX30102.h: Biblioteca especializada para operar el sensor MAX30102.
    • Pulse.h: Podría ser una biblioteca desarrollada para el manejo de señales del pulso detectado por el sensor MAX30102.
  • Funciones de manejo de señales:
    • Filtrado de la señal del sensor (DC y "moving average") para obtener una señal más limpia y precisa de la tasa de pulso y la medición de SpO2.
    • Cálculo de SpO2 usando una tabla predefinida (spo2_table) y una fórmula basada en la relación entre las señales infrarroja y roja detectadas.
  • Gestión de Energía:
    • Funciones para poner el dispositivo en modo de bajo consumo (modo de sueño) para ahorrar energía cuando no esté en uso, y reactivarlo con una interrupción del botón.
  • Interfaz de Usuario:
    • Varias pantallas o "modos" en la pantalla OLED para mostrar la tasa de pulso, la SpO2, y mensajes de estado como "Coloque su dedo", y opciones para visualizar diferentes parámetros.
Este circuito es complejo y combina hardware con software avanzado para lograr sus objetivos de medición. La implementación exacta de cada característica depende de la interacción entre estos componentes y el código proporcionado.
9mo
CREAR UN CODIGO PARA ARDUINO IDE, con arduino nano v3, sensor ultra sonico HC-SR...
@copilot CREAR UN CODIGO PARA ARDUINO IDE, con arduino nano v3, sensor ultra sonico HC-SR04, sensor de signos vitales MAX30102, motor vibrador, oled 128x32 serial i2c cii azul ssd1306, sensor acelerometro
9mo

Cpp


#include 
#include 
#include 
#include 

#define SCREEN_WIDTH 128
#define SCREEN_HEIGHT 32
#define OLED_RESET    -1
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &amp;Wire, OLED_RESET);

#define TRIGGER_PIN  2
#define ECHO_PIN     3
#define VIBRATOR_PIN 4
MAX30105 particleSensor;

void setup() {
  Serial.begin(9600);
  
  pinMode(TRIGGER_PIN, OUTPUT);
  pinMode(ECHO_PIN, INPUT);
  pinMode(VIBRATOR_PIN, OUTPUT);
  
  // Iniciar pantalla OLED
  if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {
    Serial.println(F("SSD1306 allocation failed"));
    for(;;);
  }
  display.display();
  delay(2000);
  display.clearDisplay();
  
  // Configurar el sensor de pulso y oxígeno en la sangre MAX30102
  if (!particleSensor.begin(Wire, I2C_SPEED_FAST)) {
    Serial.println("MAX30102 no encontrado. Verifique el cableado/poder.");
    while (1);
  }
  
  // Inicializar el acelerómetro (asumiendo aquí un MPU6050 como ejemplo)
  // Note que este es un pseudocódigo y asume que se ha incluido una librería que maneje el MPU6050
  
  // Más código de configuración aquí (e.g., configuración del acelerómetro)
}

void loop() {
  displayPulseOximeterData();
  measureDistance();
  // Función para manejar el motor vibrador basado en alguna condición
  // Función para leer y posiblemente visualizar datos del acelerómetro
  // Más funcionalidad aquí
}

void displayPulseOximeterData() {
  long irValue = particleSensor.getIR();
  
  if (irValue > 50000) {
    // Si hay un dedo presente, lee la tasa de pulso
    float heartRate = particleSensor.getHeartRate();
    display.clearDisplay();
    display.setTextSize(1);
    display.setTextColor(SSD1306_WHITE);
    display.setCursor(0,0);
    display.print("FC: ");
    display.print(heartRate, 1);
    display.display();
  } else {
    display.clearDisplay();
    display.setTextSize(1);
    display.setTextColor(SSD1306_WHITE);
    display.setCursor(0,0);
    display.print("Coloque el dedo");
    display.display();
  }
} 

void measureDistance() {
  digitalWrite(TRIGGER_PIN, LOW);
  delayMicroseconds(2);
  digitalWrite(TRIGGER_PIN, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIGGER_PIN, LOW);
  long duration = pulseIn(ECHO_PIN, HIGH);
  long cm = duration / 29 / 2;
  Serial.print("Distancia: ");
  Serial.print(cm);
  Serial.println("cm");
}
Este código es un punto de partida y se asumen varias cosas:
  • Tienes las bibliotecas necesarias para cada componente (Adafruit_GFX, Adafruit_SSD1306, y SparkFunMAX3010x) instaladas en tu entorno Arduino IDE.
  • Usas un MAX30105 en lugar de MAX30102 ya que el código usa una biblioteca SparkFun para ejemplo, pero deberías verificar si hay una más adecuada o actualizada específicamente para el MAX30102.
  • Para el acelerómetro, se menciona usar un MPU6050 como ejemplo, pero no se proporciona el código específico para inicialización y lectura. Tendrías que utilizar una librería compatible y agregar ese código según sea necesario.
  • Para el motor vibrador, la función que lo maneja basada en condiciones específicas debe ser añadida según tus requerimientos.
Este esquema te proporciona una estructura básica y demostraciones de cómo interactuar con cada componente. Según tus necesidades específicas del proyecto, deberás ajustar, añadir lógica de control (por ejemplo, para determinar cuándo activar el motor vibrador), manejar los datos del acelerómetro, y posiblemente desarrollar una interfaz de usuario más compleja en el display OLED.
9mo
connect the max30102 to an esp32 wroom 32e
@copilot connect the max30102 to an esp32 wroom 32e
9mo
To connect the MAX30102EFD+T oximeter/heart rate sensor to an ESP32-WROOM-32E module for I²C communication along with power and Ground connections, you need to follow these steps. I'll provide the connections assuming a typical usage scenario based on the standard pinout of the ESP32-WROOM-32E module. Please apply any adjustments as needed depending on your specific application or if you have unique requirements.
I²C Communication:
ESP32-WROOM-32E has multiple GPIOs that can be configured as I²C SCL (Serial Clock) and SDA (Serial Data). Let's use GPIO21 as SCL and GPIO22 as SDA for this example.
  • Connect SCL(P:SCL)SCL (P:SCL) on the MAX30102 to GPIO21GPIO21 on the ESP32-WROOM-32E.
  • Connect SDA(P:SDA)SDA (P:SDA) on the MAX30102 to GPIO22GPIO22 on the ESP32-WROOM-32E.
Power Connections:
The MAX30102 operates with a supply voltage (VDD) typically around 1.8V to 3.3V. The ESP32-WROOM-32E can provide 3.3V, which is suitable for powering the MAX30102.
  • Connect VDD(P:VDD)VDD (P:VDD) to a 3.3V3.3V supply from the ESP32-WROOM-32E.
  • For LED power supply, you might also connect VLED+(P:VLED+)VLED+ (P:VLED+) to the same 3.3V3.3V supply if your application requires it, given the MAX30102's specifications allow for it. Ensure this meets the current requirements of your application.
  • Connect PGND(P:PGND)PGND (P:PGND) and GND(P:GND)GND (P:GND) to the GNDGND on the ESP32-WROOM-32E to complete the power circuit.
Ground Connection:
It's crucial to have a common ground in your circuit, so ensure all ground pins (PGND and GND) are connected to the ESP32's ground.
Interrupt Pin (Optional):
If you're planning to use the interrupt feature of the MAX30102 for event-driven measurements, you can connect the ~INT pin to any available GPIO on the ESP32 that you configure as an input. For this example, let's use GPIO4.
  • Connect  INT(P: INT)~INT (P:~INT) to GPIO4GPIO4 on the ESP32-WROOM-32E.
Final Connection Overview:
  • Connect SCL(P:SCL)SCL (P:SCL) to GPIO21(ESP32)GPIO21 (ESP32).
  • Connect SDA(P:SDA)SDA (P:SDA) to GPIO22(ESP32)GPIO22 (ESP32).
  • Connect VDD(P:VDD)VDD (P:VDD) to 3.3V(ESP32)3.3V (ESP32).
  • Connect VLED+(P:VLED+)VLED+ (P:VLED+) to 3.3V(ESP32)3.3V (ESP32) (if applicable for your application).
  • Connect PGND(P:PGND)PGND (P:PGND) and GND(P:GND)GND (P:GND) to GND(ESP32)GND (ESP32).
  • Connect  INT(P: INT)~INT (P:~INT) to GPIO4(ESP32)GPIO4 (ESP32) (optional for interrupt usage).
Please make sure to enable and configure the I²C peripheral in your ESP32 software accordingly, and take the usual precautions for handling electrostatic sensitive devices. Also, verify that the power supply can handle the current requirements for both the ESP32-WROOM-32E and the MAX30102 under operation.
9mo
connect the max30102 to an esp32 wroom 32e
connect the max30102 to an esp32 wroom 32e
9mo
can you help me to connect max30102 sensor to atiny microcontroller
can you help me to connect max30102 sensor to atiny microcontroller
1y
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reac...
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reach me at any time by tagging me on comments or in the chat with my handle, @copilot.
1y
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports components that have been modified using the "!important" flag.
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.