Regulation: The PROG pin resistor sets charge current; the RT pin resistor sets switching frequency; the ITH pin network provides loop compensation.
2. Key Features
Input Range: Up to 36 V DC.
Charge Current: Programmable (typically 50 mA to several amperes) via R_PROG.
Multi-Cell Support: Configurable for 1 to 4 Li-ion cells in series.
Protections (knowledge base recommends adding these):
Polarity and reverse‐current blocking (internal MOSFET control + external Schottky diodes D1/D2).
Overvoltage, undervoltage, overcurrent, and thermal‐limit shutdown.
Status LEDs (LED1–LED3) indicate CHRG, FAULT, LOBAT.
3. Limitations
Efficiency: As a switching charger controller with external MOSFETs and inductor, overall efficiency typically 85–93%.
Thermal: Knowledge base notes that for high‐ambient operation, derate charge current by 20% above 85 °C.
Minimum Load: Requires a minimum battery voltage above 2.5 V to regulate properly.
4. Protection Schemes
Based on knowledge base guidance for “designing battery charger protection features”:
Charge current and voltage clamped by the LTC4007 and external FETs.
Automatic current‐limit reduces I_CHG if external MOSFETs overheat or if ambient > 125 °C.
Reverse discharge blocked when VIN is removed.
5. High-Temperature Operation
LTC4007 Recommended Operating Conditions: –40 °C to +125 °C (@file data).
Flux knowledge base recommends a 20% charge-current derating above 85 °C.
External MOSFETs (AO3400A/AO3401A) and inductor (SRR1260) maintain performance up to 125 °C.
6. Battery Compatibility
Supports Li-ion, LiFePO₄, NiMH, NiCd chemistries (1–4 cells in series).
For LiFePO₄, use 3.2 V nominal per cell (knowledge base: “battery chemistry LiFePO4”).
Single-cell 18650 (3.7 V nom.) is typical (knowledge base: “designing single-cell li-ion battery charger”).
7. Charge Speed & Duration
Charge Current = 50 µA / R_PROG (kΩ). For R_PROG = 40 kΩ, I_CHG ≈ 2 A.
Time to charge a 2 200 mAh cell: ∼(C / I) = 2.2 Ah / 2 A ≈ 1.1 h (not accounting for taper).
Knowledge base recommends accounting for tapering in final 10% of charge, adding ~20 min.
In summary, this module is a flexible, programmable multi-cell charger with robust protections, suitable for portable and industrial applications from –40 °C up to +125 °C. Its charge current and cell count are easily adjusted, making it broadly compatible with Li-ion, LiFePO₄, NiMH, and NiCd batteries.
The LTC3779 and LTC4007 serve different purposes. The LTC4007 is a lithium-ion battery charger IC, while the LTC3779 is a high-efficiency, 4-switch buck-boost DC/DC controller. It seems that you want to achieve a 12V output, which is more aligned with what the LTC3779 can provide.
If you're looking to redesign this circuit using an LTC3779 to achieve a 12V output, here are some considerations and steps you might take:
Power Path: The connections will differ since the LTC3779 has different pin functionalities. You would need to connect the input voltage to its VIN and VOUT to where you need the 12V.
Buck-Boost Configuration: Ensure that the inductor $L1$ and other passive components are selected to handle the currents and power levels you're targeting. The inductor value may need adjustment from 10µH.
Feedback Network: Design the feedback network to set the desired output voltage. The resistors in your current design might need changing to set the output to 12V accurately.
High-Frequency Operation: Ensure the appropriate compensation network if you plan to run the LTC3779 at high frequency.
Protection Features: The buck-boost converter also requires appropriate layout and component selection for stability and protection, similar to your existing design.
Additional Components: You may need additional MOSFETs or diodes, which are essential for the buck-boost topology in the LTC3779.
Unfortunately, simply replacing the LTC4007 with an LTC3779 wouldn't work without considerable modification since it involves different circuit designs and requirements. If you can provide more details on your input voltage and current requirements, we can explore further how to achieve your goal with the LTC3779.
Este proyecto es un circuito cargador de batería de iones de litio basado en el IC LTC4007. Este diseño incorpora MOSFETs de potencia n-channel y características de protección extensivas para condiciones de sobrecorriente, sobre voltaje, bajo voltaje y sobre temperatura. Es ideal para sistemas portátiles alimentados por batería.
Las funcionalidades clave del proyecto incluyen:
IC LTC4007: Este es el controlador principal para la carga de la batería, y también maneja la mayoría de las características de protección.
MOSFETs de potencia n-channel: Elementos clave para la conmutación de potencia en la arquitectura del cargador.
Diversos componentes de respaldo como resistencias y capacitores que fácilmente ajustables para cambiar las características de funcionamiento del circuito según las necesidades específicas.
Por favor, si tienes alguna pregunta específica sobre los componentes individuales o sobre cómo funciona el circuito, no dudes en preguntar!
Ce projet est un circuit de chargeur de batterie lithium-ion basé sur le composant intégré (IC) LTC4007. Cette conception intègre des MOSFETs de puissance à canal N et offre des fonctionnalités étendues de protection contre les surintensités, les surtensions, les sous-tensions et les surchauffes. Elle est idéale pour des systèmes portables alimentés par batterie.
Les caractéristiques clés du projet incluent :
IC LTC4007 : C'est le contrôleur principal pour la charge de la batterie, qui gère également la majorité des fonctionnalités de protection.
MOSFETs de puissance à canal N : Éléments clés pour la commutation de puissance dans l'architecture du chargeur.
Divers composants de support tels que des résistances et des condensateurs, qui peuvent être facilement ajustés pour modifier les caractéristiques de fonctionnement du circuit en fonction des besoins spécifiques.
Si vous avez des questions spécifiques concernant les composants individuels ou le fonctionnement du circuit, n'hésitez pas à demander !
Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
alex77777
copilot