• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
i want to expand this circuit ad a gyroscope a 5v to 3.3v buck convertor a lipo ...

@copilot i want to expand this circuit ad a gyroscope a 5v to 3.3v buck convertor a lipo battery charging capabilities to it
1y
Alright, let's build on what you have and add those components!

  1. Gyroscope: Many different gyros could fit depending on your needs, but let's add the widely used InvenSense MPU-6050 6-axis accelerometer and gyro. Its main interface is I2C, so we can connect it to the ESP32's I2C pins. Let's assume ESP32's IO21 is the SDA pin and IO22 is the SCL pin.
  2. Buck Converter 5V to 3.3V: You could use a module like the MP1584EN, it's a simple buck converter from Monolithic Power Systems. This can take 5V down to 3.3V. The input would connect to the 5V source, and the output would connect to the 3V3 network in your circuit.
  3. LiPo Battery Charging capabilities: For adding battery charging capabilities, you could use a module based on the MCP73831 chip from Microchip. This is a simple but effective single-cell LiPo charger. The - terminal of the module can connect to the existing GND net in your circuit, while the + terminal would become your new power net, replacing the existing 3V3 and 5V networks where needed. The BATT pin connects directly to the positive terminal of your battery, and can also connect to the VIN input pin of the MP1584EN module.
Please note that this is a basic example, and you may need to add additional components (like capacitors or resistors) depending on the specifics of your design and modules. For a more customized approach, I recommend checking the datasheets and application notes of each component.
Does this help get you started?
1y
Someone is typing...
how can i connect the esp32 to the relay?

@copilot how can i connect the esp32 to the relay?
1y
I couldn't identify that component. Sorry!
1y
@copilot how can i add a relay to the esp32?
1y
I couldn't identify that component. Sorry!
1y
Someone is typing...
1
R1
Resistance
10k Ω
3V3
C1
Capacitance
0.1u F
R2
Resistance
1k Ω
S2
EN
IO0
S1
IO0

ESP32-Module

ESP32-Module
Description

Created
December 15th 2021
Last updated by vasy_skral
a year ago
2 Contributor(s)
vasy_skral
vasyl

Controls

Properties

Availability & Pricing

DistributorQty 1
Digi-Key$0.58
LCSC$0.62
Mouser$1.18

Assets

    Thumbnail
  • thumbnail
    ESP32-Module-removebg-preview.png

    id=ESP32-Module-removebg-preview

Simulation

µs

Simulation Speed

connect relay
connect relay
6mo
i need to connect 5v relay to this espęč
i need to connect 5v relay to this espęč
6mo
@copilot
9mo
i want to 4 i2c port
9mo
It seems like you haven't asked a question or provided details regarding what you need assistance with in your ESP32 module project. Could you provide more specific details or ask a question regarding your project? For example, you might need assistance with wiring components, selecting appropriate values for components, or any other questions related to your design in Flux.
9mo
To add 4 I2C ports to your ESP32 module project, you have to understand that the ESP32 SoC supports multiple I2C interfaces. However, it does not come with dedicated I2C hardware blocks for each interface. Instead, I2C communication is handled by the software through bit-banging on general-purpose input/output (GPIO) pins. This approach grants the flexibility to use almost any pair of GPIOs as an I2C bus.
Given this flexibility and the list of IO pins available on your ESP32 module (U3), here are suggestions for setting up 4 separate I2C interfaces. Important considerations include avoiding pins dedicated to the ESP32’s flash memory and strapping pins which can alter the device's boot mode if pulled high or low at reset. For I2C, we look for pairs of pins: one as a Serial Data Line (SDA) and the other as a Serial Clock Line (SCL).
Suggested I2C Ports Configuration
I'm going to make a few assumptions for this setup:

  1. Each I2C bus will be referred to as I2C1, I2C2, I2C3, and I2C4.
  2. We'll avoid using IO12, IO15, IO0, and IO2 since they are strapping pins.
  3. We'll choose pins not mentioned for specific functionalities in your project (e.g., SENSOR_VP, SENSOR_VN, TXD0/RXD0 for UART).
Given these considerations, here are the pin assignments:
I2C1:

  • SDA: IO21
  • SCL: IO22
I2C2:

  • SDA: IO4
  • SCL: IO5
I2C3:

  • SDA: IO23
  • SCL: IO18
I2C4:

  • SDA: IO19
  • SCL: IO33
Connections:
To set these up in your schematic in Flux, ensure each SDA and SCL line includes a pull-up resistor, typically in the range of 2.2kΩ to 10kΩ, to the 3.3V rail. Since the pull-up resistor value can depend on the specifics of your I2C bus (e.g., bus capacitance or speed), a value of 4.7kΩ is a common starting point.

  • Connect R_pullup:1 to 3V3:1, R_pullup:2 to IOX:1 (where R_pullup is your pull-up resistor for a given pin and IOX is the designated SDA or SCL pin). Repeat this for each I2C SDA and SCL line chosen.
Wiring Example for I2C1:

  • Connect R1:1 to 3V3:1
  • Connect R1:2 to U3:IO21 (SDA)
  • Connect R2:1 to 3V3:1
  • Connect R2:2 to U3:IO22 (SCL)
Repeat similarly for I2C2, I2C3, and I2C4 with appropriate resistors and IO pins.
Would you need further details on other aspects, like the I2C configuration code for ESP32, or how to integrate specific I2C devices with these ports?
9mo
i want to 4 i2c port
i want to 4 i2c port
9mo
Quiero crear un circuito integrado que mandaré hacer, el circuito integrado se c...
@copilot Quiero crear un circuito integrado que mandaré hacer, el circuito integrado se conectara mediante bluetooth o wifi al teléfono, el circuito controlara una minicámara, y con un mando inalambrico, cada vez que puse el boton, enfocará la cámara y enviará la foto a una nube configurada, tendrá un pequeño almacenamiento o ranura microsd para configurar la nube, y tendrá una pequeña batería integrada junto con el módulo para cargar la misma
1y
Lo que estás buscando hacer es un sistema un tanto complejo, pero definitivamente es posible. El ESP32, que ya está en tu proyecto, es una excelente opción para este circuito ya que incluye capacidades de Wi-Fi y Bluetooth y tiene suficiente potencia de procesamiento para manejar la lógica requerida.
Para tu proyecto, necesitarás agregar los siguientes componentes en tu esquemático de PCB en el programa Flux.ai:

  1. Módulo de cámara: Un módulo de cámara ESP32-CAM sería una elección plausible. Este módulo también emplea el ESP32 y facilita tomar fotos y transmitirlas por Wi-Fi.
  2. Tarjeta de almacenamiento: Para el almacenamiento físico, puedes utilizar un módulo de tarjeta MicroSD que pueda conectarse al ESP32 a través del bus SPI. Puedes conectar las líneas SPI (MOSI, MISO, SCK, CS) del módulo MicroSD a IO23, IO19, IO18 y IO5 del ESP32 respectivamente.
  3. Batería: Para la alimentación, puedes usar una batería de iones de litio junto con un módulo de carga de batería. El módulo de carga puede ser alimentado a través de un puerto USB y puede cargar la batería mientras alimenta el ESP32.
  4. Botón: Este se utilizaría para activar la toma de la foto. Podrías conectar un interruptor momentáneo a cualquier pin de entrada libre en el ESP32, como IO4, aunque te recomendaría usar un pin con resistencia de pull-down interna.
Para el software, te recomendaría escribir un programa que haga lo siguiente:

  • Espera a que se presione el botón.
  • Cuando se presiona el botón, toma una foto con el módulo de la cámara.
  • Guarda la foto en la tarjeta MicroSD.
  • Conecta con la nube configurada (por ejemplo, un servidor FTP o algún servicio de almacenamiento en nube como Dropbox o Google Drive) a través de Wi-Fi y sube la foto.
Es importante recordar que el diseño de un sistema como este implica consideraciones importantes más allá de la mera conexión de componentes, como la gestión de energía, la implementación de las API de la nube y la manipulación de imágenes. Además, trabajar con servicio en la nube puede requerir complicaciones de seguridad y autenticación, así que te insto a que tengas precaución e investigues adecuadamente.
Nota: He proporcionado estos detalles y conexiones como recomendación inicial. Los detalles exactos pueden variar en función de los componentes y módulos específicos que decidas usar. Te aconsejo que revises todas las hojas de datos para asegurarte de que tus componentes son compatibles y están conectados correctamente.
1y
Quiero crear un circuito integrado que mandaré hacer, el circuito integrado se ...
Quiero crear un circuito integrado que mandaré hacer, el circuito integrado se conectara mediante bluetooth o wifi al teléfono, el circuito controlara una minicámara, y con un mando inalambrico, cada vez que puse el boton, enfocará la cámara y enviará la foto a una nube configurada, tendrá un pequeño almacenamiento o ranura microsd para configurar la nube, y tendrá una pequeña batería integrada junto con el módulo para cargar la misma.
1y
que camara era compatible?
que camara era compatible?
1y
what is maximum load?
@copilot what is maximum load?
1y
To provide a helpful answer, I need more context about your question. The term "maximum load" can refer to different things depending on the context.

  • If you're referring to a component in your circuit, the maximum load usually refers to the maximum amount of current or power that the component can handle without failing or degrading in performance.
  • If you're referring to a power supply or a battery, the maximum load can refer to the maximum amount of power or current that the power source can provide.
  • If you're referring to a data communication system, the maximum load can refer to the maximum amount of data that the system can handle at any given time.
Could you please provide more details or specify the component or system you're referring to?
Source(s):
1y
Can it be connected to a esp32?
1y
Yes, all the components listed in your project can be connected to an ESP32 module. However, the specifics of how they are connected depend on your project requirements and the functionality you need from the ESP32.
The ESP32 chip has multiple GPIO pins that can be used for different purposes such as digital input, digital output, analog input, SPI communication, I2C communication, UART communication, etc. You can connect the terminals, switch, resistor and capacitor to these GPIO pins based on your requirements.
Also, it's worth noting that the power supply voltage for the ESP32 should be 3.3V. Any voltage higher than 3.6V can damage the chip. The Ground of your power supply should be connected to the ground of ESP32.
Lastly, remember that each GPIO pin of the ESP32 has a maximum current of 40mA. So, if you're connecting a component that draws more than this, you will need to use a transistor or another type of driver circuit.
These are general guidelines. You should always refer to the ESP32 datasheet and the datasheets of your other components for the most accurate and detailed information.
1y
Can you add and connect a esp32 to the project?
1y
The ESP32 module is already included in your project components. It is represented by the designator U3, part name "ESP32-WROOM-32D original".
To connect it to other components, you need to follow these general steps:

  1. Identify the pins on the ESP32 you want to use. The ESP32-WROOM-32D has various pins including GPIO, ADC, SPI, I2C, UART, etc. The choice of pins depends on your project requirements.
  2. Connect the corresponding pins of the ESP32 to the terminals of your project. For example, you can connect the GPIO pins (IO) to the corresponding IO terminals in your project.
  3. Connect the ground (GND) pin of the ESP32 to the ground terminal in your project. Similarly, connect the power supply pin (3V3) of the ESP32 to your power source (3.3V).
  4. Connect any other necessary components like resistors (R1, R2), capacitors (C1, C2), and switches (S1, S2) to the appropriate pins of the ESP32.
  5. Lastly, always double-check your connections and make sure they are correct before powering up your ESP32 module to prevent any potential damage to the device.
Note: The exact connections will depend on your specific project requirements and the functionality you need from the ESP32.
Remember to refer to the ESP32-WROOM-32D datasheet for detailed information about the module's pinout and specifications.
1y
dimelo en español
1y
El módulo ESP32 ya está incluido en los componentes de tu proyecto. Está representado por el designador U3, nombre de parte "ESP32-WROOM-32D original".
Para conectarlo a otros componentes, debes seguir estos pasos generales:

  1. Identifica los pines en el ESP32 que quieres usar. El ESP32-WROOM-32D tiene varios pines, incluyendo GPIO, ADC, SPI, I2C, UART, etc. La elección de los pines depende de los requerimientos de tu proyecto.
  2. Conecta los pines correspondientes del ESP32 a los terminales de tu proyecto. Por ejemplo, puedes conectar los pines GPIO (IO) a los terminales IO correspondientes en tu proyecto.
  3. Conecta el pin de tierra (GND) del ESP32 al terminal de tierra en tu proyecto. De manera similar, conecta el pin de alimentación (3V3) del ESP32 a tu fuente de alimentación (3,3V).
  4. Conecta cualquier otro componente necesario, como resistencias (R1, R2), condensadores (C1, C2) e interruptores (S1, S2) a los pines apropiados del ESP32.
  5. Por último, siempre verifica tus conexiones y asegúrate de que sean correctas antes de alimentar tu módulo ESP32 para evitar cualquier posible daño al dispositivo.
Nota: Las conexiones exactas dependerán de los requisitos específicos de tu proyecto y la funcionalidad que necesites del ESP32.
Recuerda consultar la hoja de datos del ESP32-WROOM-32D para obtener información detallada sobre el esquema de pines y las especificaciones del módulo.
1y
Connect relay to esp32
Connect relay to esp32
1y
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports components that have been modified using the "!important" flag.
Designators
Net
P2, P1
Net - (8191 - 5c4f)
P2, P2
Net - (165e - 52f6)
P2, P35
Net - (d453 - 52f6)
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.