• USB Security Token

    USB Security Token

    This design implements a USB security token powered by an STM32 microcontroller. The device is engineered for compactness and efficient PCB integration while ensuring robust security features. Key elements of the design include: - **Microcontroller Core:** A STM32F103T8U6 serves as the primary processing unit, handling USB communication and security protocols. - **USB Interface:** A USB-A plug provides connectivity to the host. Dedicated net portals ensure proper routing of the VBUS, D+, D–, and ground signals. - **Power Regulation:** A low-dropout regulator supplies a stable 3.3V operating voltage, ensuring low noise and proper current supply to the microcontroller and peripherals. - **Signal Conditioning and EMI Filtering:** An EMI filter is used to maintain signal integrity and reduce interference while preserving the security token’s functionality. - **Synchronous Elements:** A ceramic resonator is incorporated to provide a precise clock source for USB data transfer and microcontroller operations. - **Additional Components:** Surface-mount resistors, capacitors, and LED indicators are deployed to ensure proper conditioning, decoupling, and status feedback. Their compact 0402 packages facilitate a highly integrated design. - **Connectivity and Net Portals:** Custom net portals are used throughout the schematic to streamline connectivity and PCB layout, keeping the design modular and easy to modify. This USB security token is designed with industry-standard components and robust connectivity to ensure secure, reliable operation in portable security applications. #USBToken #STM32 #PCBDesign #SecurityTechnology #PortableSecurity #Microcontrollers #USBInterface #PowerRegulation #EMIProtection #CompactDesign

    &

    253 Comments

    29 Stars


  • Portable Audio DSP

    Portable Audio DSP

    Portable Audio DSP project utilizing multiple ICs, capacitors, resistors, and LEDs for advanced audio processing and control. Designed for embedded audio applications with ESP32, ADC, DAC, and interface components. #audioDevices #DSP #ADC #audio #DAC

    &

    43 Comments

    7 Stars


  • Pulse Width Modulation (PWM) Controller

    Pulse Width Modulation (PWM) Controller

    This project is a Pulse Width Modulation (PWM) Controller, built around an LM555 timer IC. It controls a load connected to a MOSFET, with adjustments via a potentiometer, and uses capacitors, resistors and diodes for various functions. #PWM #controller #project #Template #projectTemplate

    88 Comments

    5 Stars


  • Strangest LED Blinker TestSite

    Strangest LED Blinker TestSite

    Project Overview: This project is an enhanced LED blinking circuit that goes beyond a simple 555 timer-based design. It incorporates additional features such as random blinking patterns, speed control, and a start/stop function. The project utilizes a microcontroller, such as an Arduino or Raspberry Pi, to control the blinking patterns, speed, and start/stop functionality. LED Blinking: The board features a total of 8 LEDs that blink in various random patterns. When the board is powered on, even before user interaction, the LEDs start blinking randomly, creating an eye-catching display. Each LED has its own current-limiting resistor to ensure proper current flow and prevent damage. The microcontroller is programmed to generate random blinking patterns for the LEDs, ensuring that the LEDs do not blink in a predictable or sequential order. This random blinking adds an element of unpredictability and visual interest to the project. Speed Control: The board includes two speed control buttons that allow the user to adjust the blinking speed of the LEDs. Button 1 is designated as the "fast" button, increasing the blinking speed when pressed, while Button 2 is designated as the "slow" button, decreasing the blinking speed when pressed. The speed control provides a range of blinking speeds, from a slow, gradual blink to a rapid, strobe-like effect. The microcontroller monitors the state of the speed control buttons and adjusts the blinking speed accordingly. Start/Stop Functionality: A third button serves as a start/stop control. When pressed, it toggles the blinking of the LEDs on or off. This allows the user to freeze the blinking pattern at any desired moment or resume the blinking when desired. The microcontroller handles the start/stop functionality by turning the LEDs on or off based on the state of the start/stop button. Manual Speed Adjustment: In addition to the speed control buttons, the board includes a potentiometer or variable resistor. This component allows the user to manually adjust the blinking speed of the LEDs by turning the knob or sliding the control. The manual speed adjustment provides more precise and customizable control over the blinking speed compared to the preset speeds of the buttons. The microcontroller reads the analog value from the potentiometer and adjusts the blinking speed accordingly. Power and Connectivity: The board is powered through a USB-C or USB-micro B connector, allowing it to be easily connected to a power source such as a computer or wall adapter. A voltage regulator may be included to ensure a stable and appropriate voltage supply to the components. A power switch is incorporated to conveniently turn the board on or off.

    224 Comments

    4 Stars


  • Q4-2022-Dogfooding-On Air-markwu2001-Remix-R1

    Q4-2022-Dogfooding-On Air-markwu2001-Remix-R1

    IMPORTANT NOTICE: Hey, I opened editing permissions and this doc is broken, see the frozen version here: https://www.flux.ai/markwuflux/on-air-markwu2001-remix-r1-backup-freeze-0b49 R1 changes: -Changed LED part to Red LEDs -adjusted resistor value of buck converter -Changed source for USB-C Connector -Removed exposed soldermask on buck converter with negative soldermask expansion -Order with black soldermask Modified by markwu2001: - Adjustable Brightness, - 85-90% Drive Efficiency - <5W Operation (Can use 5V 1A Plug) This project can be purchased from LCSC Original Description: Daddy's second circuit board. A sign to let my wife know when I'm on a call. Activates with a slide switch and is powered by USB-C.

    3 Comments

    4 Stars


  • i.MX RT1010 LoRa Logger

    i.MX RT1010 LoRa Logger

    This project is a LoRa data logger implementing the i.MX RT1010 microcontroller. It collects and logs data through the LoRa-E5 module and stores the data via a TF card. Capacitors and resistors are used to construct the necessary circuits, ensuring proper functionality. This system is ideal for long-distance, low-power IoT applications. #project #LoRa #RT1010 #SDCARD

    12 Comments

    4 Stars


  • AI Design Reviews

    AI Design Reviews

    Whenever I ask for a design review, I need you to test each of these individual aspects one by one: - All reset/enable have an external pull-up or pull-down resistors - None of the floating pins require pull-up or pull-down resistors - All resistor’s voltage rating is sufficient for the maximum voltage applied. If any resistor doesn't contain voltage rating please flag this clearly as an error.

    21 Comments

    3 Stars


  • Alive Crimson Time Machine

    Alive Crimson Time Machine

    Determine el circuito equivalente de Thévenin entre A y B del circuito mostrado, deberás dibujar el circuito equivalente de Thévenin. Determine VTH y RTH si se conecta un resistor variable de 850 Ω en paralelo entre los extremos de R2 y R3

    3 Comments

    3 Stars