• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
recommend a replacement for IC5.

Someone is typing...
are all my components in this project RoHS compliant?

Someone is typing...
4
please explain what U4 does.

Someone is typing...
7
recommend a replacement for C24.

Someone is typing...
5
verify that all passive components have an appropriate voltage ratings.

Someone is typing...
3
check all my ICs for any missing decoupling capacitors. Flag any warnings and ma...

Someone is typing...
2

Portable Audio DSP

Portable Audio DSP
Description

Created
June 3rd 2024
Last updated by vasy_skral
3 months ago
2 Contributor(s)
vasy_skral
jharwinflux

Controls

Availability & Pricing

DistributorQty 1
Arrow$26.86–$38.67
Digi-Key$21.54–$65.03
LCSC$116.39–$116.98
Mouser$55.58
Verical$25.29–$27.21

Assets

Simulation

µs

Simulation Speed

create a detailed step by step plan table for this project to verify its functio...
@copilot create a detailed step by step plan table for this project to verify its functionality.
10d
To verify the functionality of the Portable Audio DSP project, we'll create a detailed step-by-step plan focusing on different aspects of the design, including powering up the circuit, testing individual components, and ensuring proper communication between elements. Here's a step-by-step plan table for the project:

Table


StepDescriptionExpected Outcome
1Power Supply VerificationEnsure correct voltage levels (+3V3, +5VA, +12V) are supplied to the circuit.
2Power Rail ConnectionsVerify connections of power supply pins to components.
3Initial Power-OnPower up the circuit and check for voltage levels at key nodes.
4ESP32 VerificationConfirm ESP32 is powered and able to be programmed via USB.
5ADC Inputs Test (CS5361)Validate proper analog input signal conversion.
6DAC Outputs Test (PCM1795DBR)Check correct audio signal output.
7Amplifier Stage Testing (OPA1612AID)Verify the amplifier stage outputs as expected based on input signals.
8DSP Functionality (ADAU1452)Load test firmware to validate DSP processing.
9I2C Communication (U11: TCA6424ARGJR)Verify communication between I2C devices and microcontroller.
10USB-UART Communication (CH340C)Test transmission and reception of data via USB-UART interface.
11Audio Interface VerificationConfirm proper operation of audio input and output jacks.
12Debugging LEDs TestCheck that debugging LEDs respond to the programmed signals.
13Final Integration TestRun the system with an audio source to validate end-to-end functionality.
14Performance EvaluationMeasure signal fidelity and processing latency if applicable.
15Documentation UpdateRecord all findings and adjustments for future reference.
This plan includes verification steps for the key functional areas of your project. Would you like more specific testing procedures or tools to use for each step?
10d
jak zobrazim soucastky
@copilot jak zobrazim soucastky
18d
Chcete-li zobrazit součástky ve vašem projektu na Flux, můžete přejít do části, kde jsou součástky uvedeny v textovém popisu vašeho projektu. V tomto popisu najdete seznam součástek, jako jsou rezistory, kondenzátory, integrované obvody atd., spolu s jejich designátory, hodnotami a dalšími charakteristikami.
Na Flux můžete použít následující kroky:

  1. Vyhledejte designátory součástek: Každá součástka má unikátní designátor, např. R38R38 pro rezistory, C73C73 pro kondenzátory.
  2. Prohlédněte si vlastnosti: U každé součástky se často zobrazují vlastnosti jako kapacitance, rezistance, výrobce atd.
  3. Použijte odkazy: Každý designátor lze použít jako odkaz pro navigaci přímo k vyznačené části ve vašem návrhu na Flux, pokud používáte správnou strukturu URL.
Pokud chcete konkrétní vizualizaci nebo detaily o určitých součástkách uvnitř vašeho projektu, stačí mi to sdělit a mohu vám poskytnout informace z textu, který jste mi poskytli.
18d
quiero el es quema de conexiones de un circuito electrónico que suba y baje un a...
@copilot quiero el es quema de conexiones de un circuito electrónico que suba y baje un actuador lineal
1mo
Para diseñar un esquema de conexiones para controlar un actuador lineal que sube y baja, generalmente necesitas una fuente de alimentación, un controlador para el actuador (como un relé o un H-bridge), y un sistema de control (como un microcontrolador o interruptores).
Aquí te detallo los componentes y conexiones básicas que podrías necesitar:
Componentes Necesarios:

  1. Fuente de alimentación: Asegúrate de que sea adecuada para el actuador.
  2. Actuador lineal: Según la especificación de tu proyecto.
  3. Controlador de dirección (H-Bridge): Como el L298N.
  4. Microcontrolador o Interruptores: Dependiendo de cómo quieras controlar el actuador.
Esquema de Conexiones Básico:

  • H-bridge (Como el L298N):

    • Alimentación del circuito: Conecta el pin de alimentación (VCC) al positivo de la fuente de alimentación.
    • Conecta las tierras (GND) comunes entre el H-bridge, la fuente de alimentación, y el controlador.
    • Conecta los pines de salida del puente (OUT1 y OUT2) a los terminales del actuador lineal.
    • Conecta los pines de control del H-bridge a los pines de salida del microcontrolador o a un par de interruptores que determinen la dirección (subir o bajar).
Control de Dirección:

  • Usando Microcontrolador:

    • Conecta las salidas digitales del microcontrolador a los pines de entrada del H-bridge para controlar la dirección.
  • Usando Interruptores:

    • Usa dos interruptores, uno para subir y otro para bajar, conectando estos a los pines de control del H-bridge.
Propuesta de Configuración:

Image


Sistema de Control
+V
GND
OUT1
OUT2
IN1
IN2
Microcontrolador/Interruptor
H-Bridge L298N
Fuente de Alimentación
Actuador Lineal
Asegúrate de ajustar las conexiones según los pines específicos del controlador que utilices y prueba siempre en un entorno controlado antes de conectar el actuador a su carga real. Si tienes más detalles o alguna preferencia específica en cuanto a los componentes, házmelo saber para ajustar el esquema.
1mo
quiero diseñar en pbc una antena yagui de 2.4ghz
@copilot quiero diseñar en pbc una antena yagui de 2.4ghz
2mo
what is this project about
@copilot what is this project about
2mo
This project is a "Portable Audio DSP" designed for embedded audio applications. It utilizes multiple integrated circuits (ICs), capacitors, resistors, and LEDs to perform advanced audio processing and control. Key components of this project include:

  • DSP (Digital Signal Processor): The main processing unit is the ADAU1452\text{ADAU1452} from Analog Devices, designed for audio processing.
  • ESP32: Utilized for additional processing capabilities or connectivity, specifically the ESP32-WROOM-32\text{ESP32-WROOM-32} module.
  • ADC (Analog-to-Digital Converter): The CS5361\text{CS5361} is used to convert analog audio signals into digital data for processing.
  • DAC (Digital-to-Analog Converter): The PCM1795DBR\text{PCM1795DBR} is used to convert processed digital audio back to analog form.
  • Interface Components: Various transistors, diodes, and connectors are used to interface the DSP with other parts of the system and external devices.
This design seems well-suited for applications requiring high-quality audio processing, such as portable audio manipulation tools, audio interfaces, or media players. Is there anything specific you'd like to know or a particular aspect of the project you're focused on?
2mo
show me an image of anything related to this project
@copilot show me an image of anything related to this project
6mo

Python


import matplotlib.pyplot as plt import networkx as nx # Create a graph related to audio processing connections G = nx.DiGraph() # Adding nodes for different ICs and components G.add_node('ESP32', shape='s') G.add_node('ADC', shape='o') G.add_node('DAC', shape='o') G.add_node('DSP', shape='s') G.add_node('Amplifier', shape='o') G.add_node('Speaker', shape='d') G.add_node('Microphone', shape='d') # Connect the components to illustrate the audio processing path G.add_edges_from([ ('Microphone', 'ADC'), ('ADC', 'DSP'), ('DSP', 'DAC'), ('DSP', 'ESP32'), ('DAC', 'Amplifier'), ('Amplifier', 'Speaker'), ('ESP32', 'DAC') ]) # Define positions of nodes for a better visualization pos = { 'ESP32': $$0, 1$$, 'ADC': $$-1, 0$$, 'DAC': $$1, 0$$, 'DSP': $$0, 0$$, 'Amplifier': $$2, -1$$, 'Speaker': $$3, -2$$, 'Microphone': $$-2, -1$$ } # Draw the graph plt.figure(figsize=(8, 6)) nx.draw(G, pos, with_labels=True, node_size=3000, node_color='skyblue', font_size=10, font_weight='bold', arrowsize=20, edge_color='gray') plt.title('Audio Processing Path in Portable Audio DSP') plt.show()
6mo
create a mermaid-formatted block diagram of this project, separate the power and...
@copilot create a mermaid-formatted block diagram of this project, separate the power and dac sections.
6mo
To create a block diagram for your Portable Audio DSP project with separate power and DAC sections, I'll outline the key components and their interconnections using Mermaid JS syntax.
Power Section
Components:

  • +12V: J4
  • +5V: IC4, IC6
  • +3V3: U5, U6, Various Capacitors and Resistors
DAC Section
Components:

  • PCM1795DBR (U2)
  • Various Resistors and Capacitors for the DAC circuit.
Here's a simplified block diagram using Mermaid syntax:
Explanation:

  • Power Section:

    • +12V: J4 as the input.
    • +5V: IC4 and IC6 as voltage regulators that step down to +5V.
    • +3V3: U5 and U6 as voltage regulators that step down to +3V3.
    • Components powered by +3V3 connect to PWR3.
  • DAC Section:

    • PCM1795DBR: Main DAC IC with BCK, LRCK, and DATA as inputs.
    • Outputs (IOUTL+/-, IOUTR+/-) connect to corresponding nets and components.
Note:
Feel free to refine the block diagram according to your project's specific requirements and the level of detail you need.
6mo
can you write me a short(100-200 symbols) description for this project
@copilot can you write me a short(100-200 symbols) description for this project
6mo
Certainly! Here's a concise description:

Portable Audio DSP project utilizing multiple ICs, capacitors, resistors, and LEDs for advanced audio processing and control. Designed for embedded audio applications with ESP32, ADC, DAC, and interface components.

Does this meet your needs? Feel free to ask for any adjustments!
6mo
Certainly! Here's an SEO-optimized version:

Build a Portable Audio DSP with ESP32, ADC, DAC, ICs, and more. This project offers advanced audio processing and control, ideal for embedded audio applications. Explore the use of capacitors, resistors, LEDs, and interface components for superior performance.

I hope this works for you! Let me know if you need any further adjustments.
6mo
@copilot can you suggest more for SEO?
6mo
Absolutely! Here's an enhanced description with an emphasis on SEO:

Create a Portable Audio DSP for advanced sound processing and control using ESP32, ADC, DAC, and various ICs. Perfect for embedded audio applications, this project incorporates capacitors, resistors, LEDs, and other essential components to deliver outstanding audio performance. Ideal for audio engineers and DIY enthusiasts seeking to enhance their audio design skills.

Key phrases for better SEO include:

  • Portable Audio DSP
  • ESP32 embedded audio
  • advanced audio processing
  • capacitors, resistors, LEDs
  • audio engineering project
  • DIY audio DSP
Let me know if this aligns with your goals!
6mo
should I connect mounting pins of J7 to GND net directly or should I add some fi...
@copilot should I connect mounting pins of J7 to GND net directly or should I add some filtering circuit or leave it disconnected or something else you'll suggest?
7mo
For your portable audio DSP project, let's consider the best approach for handling the mounting pins of J7 (a barrel jack connector, MPN: PJ-063AH).
Option 1: Direct Connection to GND

  • Pros:

    • Direct connection to GND is simple and ensures a strong mechanical and electrical bond.
    • Good for noise reduction and stable connection.
  • Cons:

    • Doesn't provide additional filtering which might be useful in some high-noise environments.
Option 2: Adding Filtering Circuit

  • Pros:

    • Adding filtering components like capacitors or ferrite beads can help filter high-frequency noise.
    • Useful in environments with a lot of electrical noise or for sensitive analog circuits.
  • Cons:

    • More complex and takes extra space on the PCB.
    • Requires careful selection of filtering components to avoid unintended effects.
Option 3: Leaving it Disconnected

  • Pros:

    • Simplifies the design.
    • Sometimes mechanically isolating the mounting pins can help avoid ground loops.
  • Cons:

    • Might result in an unstable mechanical connection.
    • Potential risk for increased noise without a solid ground connection.
Recommended Approach
Connecting the mounting pins to GND is generally a good practice to ensure a stable and noise-reduced connection. If you're concerned about noise, you can consider adding a simple filtering circuit.
Suggested Steps

  1. Direct Ground Connection: Connect the mounting pins to the GND net directly.
  2. Add Decoupling Capacitors: Optionally, add a decoupling capacitor close to the jack to filter out high-frequency noise.

    • For example:

      • Connect a 0.1 µF capacitor between the mounting pins and the ground.
Implementation:

  • Connect J7:MountPin to GND.
  • Optionally, place a 0.1 µF capacitor close to J7 for additional filtering.
Here's the specific connection:

  • Direct Connection:

    • Connect J7:MountPin to GND.
  • Additional Filtering:

    • Connect J7:MountPin to one terminal of a 0.1 µF capacitor.
    • Connect the other terminal of the capacitor to GND.
Example:

Plaintext


Connect J7:MountPin to GND. Optional: Connect a 0.1 µF capacitor between J7:MountPin and GND.
Please let me know if you need further details or any other assistance!
7mo
how should I connect ADAU1452 to CS5381?
@copilot how should I connect ADAU1452 to CS5381?
7mo
To connect the ADAU1452 (U1) DSP to the CS5381 (IC1) ADC, you'll need to connect the relevant digital audio interface signals between the two ICs. Here's a common way to connect them using an I2S interface:

  1. Master Clock (MCLK)

    • Connect a common MCLK signal to both devices (typically from a crystal oscillator).
    • Connect X1:OUT/IN (Oscillator Output) to U1:XTALIN/MCLK and IC1:MCLK.
  2. Serial Data Out (SDATA) from ADC to DSP

    • Connect IC1:SDOUT to U1:SDATA_IN0, SDATA_IN1, SDATA_IN2, or SDATA_IN3, depending on your available data lines.
  3. Bit Clock (BCLK)

    • Generate BCLK from the DSP (assuming the DSP is the I2S master).
    • Connect U1:BCLK_OUT0, BCLK_OUT1, BCLK_OUT2, or BCLK_OUT3 to IC1:SCLK.
  4. Left-Right Clock (LRCLK)

    • Generate LRCLK from the DSP (assuming the DSP is the I2S master).
    • Connect U1:LRCLK_OUT0/MP4, LRCLK_OUT1/MP5, LRCLK_OUT2/MP8, or LRCLK_OUT3/MP9 to IC1:LRCK.
  5. Audio Data Format

    • Ensure both devices are configured for I2S or a compatible format (via their register settings).
Here's a detailed connection list:

  • Master Clock (MCLK)

    • Connect X1:OUT/IN to U1:XTALIN/MCLK.
    • Connect X1:OUT/IN to IC1:MCLK.
  • Serial Data (SDOUT)

    • Connect IC1:SDOUT to U1:SDATA_IN0.
  • Bit Clock (BCLK)

    • Connect U1:BCLK_OUT0 to IC1:SCLK.
  • Left-Right Clock (LRCLK)

    • Connect U1:LRCLK_OUT0/MP4 to IC1:LRCK.
  • Power and Ground Connections

    • Connect IC1:VD to the 3.3V power supply.
    • Connect IC1:GND to ground.
    • Connect IC1:VA to the analog power supply.
    • Connect IC1:AGND to analog ground.
Assuming the ADAU1452 is the I2S master:

  • Mode Select Pins: Ensure proper I2S master/slave configuration with other pins as per datasheet.
Power Connections for Stability:

  • Ensure appropriate power supply decoupling with capacitors close to power pins.
Note: Ensure to cross-check I2C/SPI pins and control registers needed to configure interfaces. Also, refer to datasheets for exact pin details and ensure both devices are correctly configured.
Would you like any further details on connecting these components?
7mo
how should I power VA, VD, VL on CS5381?
7mo
Powering the CS5381 (IC1) involves providing stable and clean power supplies to its various voltage domains. Here’s a suggested way to do this:

  1. VA (Analog Supply Voltage)

    • This is typically powered with a stable analog voltage, often 5V, but check the datasheet for the exact required voltage.
    • Decouple VA with a capacitor (e.g., 10µF ceramic capacitor) close to the pin to minimize noise.
  2. VD (Digital Core Supply Voltage)

    • This is usually powered with a 3.3V supply.
    • Use a decoupling capacitor (e.g., 0.1µF ceramic capacitor) close to the pin.
  3. VL (Digital Interface Logic Voltage)

    • This is typically powered by a voltage that matches the signal levels of the interfacing device, often 3.3V.
    • Decouple VL with a capacitor (e.g., 0.1µF ceramic capacitor) close to the pin.
Detailed Connection Example Analog Supply (VA)

  • Connect a 5V analog power supply to IC1:VA.
  • Decouple IC1:VA with a 10µF ceramic capacitor to ground.
Digital Core Supply (VD)

  • Connect a 3.3V digital power supply to IC1:VD.
  • Decouple IC1:VD with a 0.1µF ceramic capacitor to ground.
Digital Interface Logic Supply (VL)

  • Connect a 3.3V supply to IC1:VL.
  • Decouple IC1:VL with a 0.1µF ceramic capacitor to ground.
Ground Connection

  • Connect all ground pins to the ground plane.
  • Ensure the analog and digital grounds (AGND and DGND) are properly managed to prevent noise coupling.
Recommended Connections:

  • VA Supply:

    • Connect +5V to IC1:VA.
    • Connect a 10µF capacitor between IC1:VA and AGND (Analog Ground).
  • VD Supply:

    • Connect +3.3V to IC1:VD.
    • Connect a 0.1µF capacitor between IC1:VD and DGND (Digital Ground).
  • VL Supply:

    • Connect +3.3V to IC1:VL.
    • Connect a 0.1µF capacitor between IC1:VL and DGND.
Ground Pins:

  • Connect IC1:AGND, IC1:DGND, and IC1:REFGND to the ground plane.
Example Components Used for Decoupling:

  • 10µF ceramic capacitor: Use this near the VA pin.
  • 0.1µF ceramic capacitors: Use these near the VD and VL pins.
Connection List

  1. Power Supplies

    • Connect +5V to IC1:VA.
    • Connect +3.3V to IC1:VD.
    • Connect +3.3V to IC1:VL.
  2. Decoupling Capacitors

    • Connect a 10µF capacitor between IC1:VA and AGND.
    • Connect a 0.1µF capacitor between IC1:VD and DGND.
    • Connect a 0.1µF capacitor between IC1:VL and DGND.
  3. Ground

    • Connect IC1:AGND, IC1:DGND, and IC1:REFGND to the ground plane.
These steps should ensure stable and clean power delivery to the CS5381, minimizing noise and potential interference in your audio signal.
7mo
how should I connect ADAU1452 to PCM1795?
@copilot how should I connect ADAU1452 to PCM1795?
7mo
To connect the ADAU1452 (U1) to the PCM1795 (U2), you will primarily need to establish the I2S connections (Master Clock, Bit Clock, and Left-Right Clock), the control interface (I2C or SPI), and power connections. Here are the details:

  1. I2S Connections:

    • LRCK (Left-Right Clock):

      • Connect U1:LRCLK_OUT0/MP4 to U2:LRCK.
    • BCK (Bit Clock):

      • Connect U1:BCLK_OUT0 to U2:BCK.
    • SDATA (Serial Data Line):

      • Connect U1:SDATA_OUT0 to U2:DATA.
  2. Control Interface (I2C):

    • Since the PCM1795 uses an I2C interface for control, you need to connect the I2C lines (SCL and SDA):

      • SCL:

        • Connect U1:SCL to U2:SCL.
      • SDA:

        • Connect U1:SDA to U2:MDO.
  3. Power and Ground Connections:

    • Power: Ensure the power pins are connected to the corresponding power rails. Assuming typical connections for such devices:

      • Connect +3V3:P1 to U1:IOVDD, U1:DVDD, U2:VDD, and U2:VCC2L, and U2:VCC2R (assuming 3.3V operation).
      • Connect +3V3:P1 to U1:VDRIVE.
    • Ground: Ensure all ground pins are connected to a common ground net. For example:

      • Connect U1:DGND, U1:PGND, U1:AGND, U1:EP to your ground net.
      • Connect U2:DGND, U2:AGND1, U2:AGND2, U2:AGND3L, U2:AGND3R to your ground net.
  4. Reset Connection:

    • Reset Pin:

      • Connect U1:~RESET to U2:~RST.
Here are the specific net connections:

  • LRCK:

    • Connect U1:LRCLK_OUT0/MP4 to U2:LRCK.
  • BCK:

    • Connect U1:BCLK_OUT0 to U2:BCK.
  • SDATA:

    • Connect U1:SDATA_OUT0 to U2:DATA.
  • Control Interface (I2C):

    • Connect U1:SCL to U2:SCL.
    • Connect U1:MISO/SDA to U2:MDO.
  • Power:

    • Connect +3V3:P1 to U1:IOVDD, U1:DVDD, U2:VDD, U2:VCC1, U2:VCC2L, and U2:VCC2R.
    • Connect +3V3:P1 to U1:VDRIVE.
  • Ground:

    • Connect U1:DGND, U1:PGND, U1:AGND, U1:EP, U2:DGND, U2:AGND1, U2:AGND2, U2:AGND3L, and U2:AGND3R to your common ground net.
  • Reset:

    • Connect U1:~RESET to U2:~RST.
Make sure to add decoupling capacitors for stable operation, and refer to the datasheets for both the ADAU1452 and the PCM1795 for additional specifics and recommended connections.
If you need more specific assistance with the connections or additional context, feel free to ask!
7mo
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports components that have been modified using the "!important" flag.
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.