[REV 2] BRAVE POWER MANAGEMENT BOARD
Brave V2 is a versatile and efficient power board that can provide 12v, 5v and 3.3v outputs for various applications. It can be powered by battery or solar panel (now revised to accepts input voltage of upto 30V), and the battery can be recharged by solar energy. It can also be powered by a USB port if needed. This board is ideal for IoT projects that require reliable and stable power supply in different environments. #IoT #power #management #usb... show more3 Comments
1 Star
AvocAudio: A tinyML community board v2 Modules
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #raspberryPi #rp2040 #lorawan #iot #solar... show more2 Comments
1 Star
Particle Argon Template
The Argon is a powerful Wi-Fi enabled development board for Wi-Fi networks. It is based on the Nordic nRF52840 and has built-in battery charging circuitry so it’s easy to connect a Li-Po and deploy your local network in minutes. #Particle #Argon #Template #Iot #Project-template... show more1 Comment
1 Star
AvocAudio - Fully Placed d889 ec31
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Comment
1 Star
Flora Mainboard
FLORA has a small but easy to use onboard reset button to reboot the system. The power supply is designed to be flexible and easy to use. There is an onboard polarized 2 JST battery connector with protection schottky diode for use with external battery packs from 3.5v to 16v DC in. Can be used with LiIon/LiPoly, LiFe, alkaline or rechargeable NiMh/NiCad batteries of any size. The FLORA does not have a LiPo charger included by design, this allows safe use with multiple battery types and reduces risk of fire as it is not recommended to charge these batteries on fabric.... show more1 Comment
1 Star
TP4056_Module
The TP4056 1A Li-ion Lithium Battery Charging Module with Current Protection – Mini USB is a compact device designed to charge individual lithium ion (Li-Ion) cells that lack their own protective circuit, such as 16550s, with a single cell capacity of 3.7V and 1 Ah or higher. This battery charging module employs the TP4056 charger IC and DW01 battery protection IC to provide a charge current of 1A, which will cease upon completion of the charging process. https://robocraze.com/products/tp4056-lithium-battery-charging-board #PCB #TP4056 #battery... show more1 Comment
1 Star
[QA] Real Professional Project
Arduino Uno shield used to monitor chimney smoke and provide feedback to stove. This shield powers the Arduino using TEGs and a battery. This shield provides power to an LED, fans, and a light sensor used to detect light intensity.... show more1 Comment
1 Star
MAX1551 Reference Design
This project is a battery charging circuit utilizing a MAX1551 chip. It features a USB and DC power input, with LED status indicators. The design is outfitted with necessary decoupling capacitors and resistors to ensure smooth operation. #project #Template #charger #referenceDesign #batterycharger #MAX1551 #template #bms #analog... show more1 Comment
1 Star
Adafruit-PowerBoost-500-Charger-Sublayout iSzX
PowerBoost 500C is the perfect power supply for your portable project! With a built-in battery charger circuit, you'll be able to keep your project running even while recharging the battery! This little DC/DC boost converter module can be powered by any 3.7V LiIon/LiPoly battery, and convert the battery output to 5.2V DC for running your 5V projects.... show more1 Comment
1 Star
Seeed Studio XIAO ESP32S3 Sense a323
Seeed Studio XIAO ESP32S3 leverages dual-core ESP32S3 chip, supporting both Wi-Fi and BLE wireless connectivities, which allows battery charge. It integrates built-in camera sensor, digital microphone. It offers 8MB PSRAM, 8MB FLASH, and external SD card slot. All of these make it suitable for embedded ML, like intelligent voice and vision AI. #SeeedStudio #xiao... show more1 Comment
1 Star
CheckIt_mini
CheckIt is a daily habit tool. When you complete a habit, flip a switch, then an LED lights up. Future work will include wiring the 24pin FPC port to the Pico which causes an e-paper screen to display a message when a switch is flipped. This PCB runs using a Raspberry Pi Pico and has plans to be battery powered similar to a digital alarm clock.... show more1 Comment
1 Star
yamaha accu dongle
Battery Dongle for allowing any suitable Battery to be attached to Yamaha ebike motors.1 Comment
1 Star
LoRa Door and Window Sensor Reference Design bbYa
This is a LoRa-based door and window sensor incorporating a microcontroller unit (MCU). It features a reed sensor, LED indicators, a AAA non-rechargeable battery, and a booster IC for constant voltage. The MCU is linked to peripherals through nets, ensuring optimal performance #LoRa #MCU #ReferenceDesign #project #referenceDesign #simple-embedded #seeed #seeed-studio #template #reference-design... show more1 Comment
1 Star
B2Bordjie_2_1_0_R2LNGB_24I
B2Bordjie 2.1.0 R2LNGB-24I Raspberry Pico 2 Lora NFC GPS Battery 24V Input... show more1 Star
RT9525 ESP32 Wireless BMS
This is ESP32-S3-MINI-1 Wireless BMS project for a battery charger based on the RT9525 battery charger IC from Richtek. #project #ESP32 #ESP32S3 #charger #batterycharger #template #bms #monitor #RT9525 #richtek #polygon... show more1 Star
Brainstorm a new project with AI [Example]
make this for me now # Device Summary & Specification Sheet ## 1. Overview A rugged, Arduino-Uno-and-Raspberry-Pi-style single-board micro-PC featuring: - Smartphone-class CPU (Snapdragon 990) - USB-C Power Delivery + 4×AA alkaline backup + ambient-light harvester - On-board Arduino-Uno-compatible ATmega328P - External NVMe SSD via USB3 bridge & optional Thunderbolt 3 eGPU support - 5× USB 3.0 ports, HDMI in/out, Gigabit Ethernet & SFP fiber, Wi-Fi, Bluetooth, LoRa - 0.96″ OLED status display, 3.5 mm audio jack with codec --- ## 2. Key Specifications | Category | Specification | |--------------------|-------------------------------------------------------------------------------| | CPU | Snapdragon 990, octa-core up to 2.84 GHz | | Memory | 6 GB LPDDR4x DRAM | | Storage Interface | PCIe Gen3 ×4 → M.2 NVMe + USB 3.1 Gen1 bridge | | MCU | ATmega328P (Arduino-Uno-compatible) | | Power Input | USB-C PD up to 20 V/5 A; 4×AA alkaline backup; ambient-light photodiode boost | | Power Rails | 12 V, 5 V, 3.3 V, 1.8 V, 1.2 V via buck/buck-boost regulators | | USB Hub | 5× USB 3.0 downstream ports | | Display | 0.96″ 128×64 OLED via I²C/SPI | | Networking | 1 × Gigabit RJ45; 1 × SFP fiber; Wi-Fi 802.11ac + Bluetooth; LoRa SX1276 | | Video I/O | HDMI 2.0 input (RX) & output (TX) | | Audio | 3.5 mm jack + TLV320AIC3101 codec; Bluetooth audio | | Form Factor | Raspberry Pi–style header + Arduino-Uno shield headers; 4× standoff mounts | --- ## 3. Complete Parts List | Part | Function | Qty | |------------------------------------------------------------------------------------------------|-----------------------------------------------|-----| | [Snapdragon 990](https://www.flux.ai/search?type=components&q=Snapdragon%20990) | Main application CPU | 1 | | [LPDDR4x DRAM](https://www.flux.ai/search?type=components&q=LPDDR4x%20DRAM) | System memory | 1 | | [eMMC 64GB](https://www.flux.ai/search?type=components&q=eMMC%2064GB) | On-board storage | 1 | | [M.2 NVMe Connector](https://www.flux.ai/search?type=components&q=M.2%20NVMe%20Connector) | External SSD interface | 1 | | [JMS583](https://www.flux.ai/search?type=components&q=JMS583) | PCIe→USB 3.1 bridge for NVMe | 1 | | [Titan Ridge](https://www.flux.ai/search?type=components&q=Titan%20Ridge) | Thunderbolt 3/eGPU controller | 1 | | [STUSB4500](https://www.flux.ai/search?type=components&q=STUSB4500) | USB-C Power-Delivery controller | 1 | | [LTC4412](https://www.flux.ai/search?type=components&q=LTC4412) | Ideal-diode OR-ing | 1 | | [LTC3108](https://www.flux.ai/search?type=components&q=LTC3108) | Ambient-light (solar) energy harvester | 1 | | [Battery Holder 4×AA](https://www.flux.ai/search?type=components&q=Battery%20Holder%204xAA) | Alkaline backup power | 1 | | [TPS53318](https://www.flux.ai/search?type=components&q=TPS53318) | 6 V→5 V synchronous buck regulator | 1 | | [MCP1700-3302E/TO](https://www.flux.ai/search?type=components&q=MCP1700-3302E/TO) | 6 V→3.3 V LDO | 1 | | [TPS63060](https://www.flux.ai/search?type=components&q=TPS63060) | Buck-boost for 12 V rail (eGPU power) | 1 | | [ATmega328P](https://www.flux.ai/search?type=components&q=ATmega328P) | Arduino-Uno microcontroller | 1 | | [ESP32-WROOM-32](https://www.flux.ai/search?type=components&q=ESP32-WROOM-32) | Wi-Fi + Bluetooth co-processor | 1 | | [SX1276](https://www.flux.ai/search?type=components&q=SX1276) | LoRa transceiver | 1 | | [TUSB8041](https://www.flux.ai/search?type=components&q=TUSB8041) | 5-port USB 3.0 hub IC | 1 | | [Ethernet PHY](https://www.flux.ai/search?type=components&q=Ethernet%20PHY) | Gigabit Ethernet physical transceiver | 1 | | [SFP Cage](https://www.flux.ai/search?type=components&q=SFP%20Cage) | Fiber-optic SFP module connector | 1 | | [TDA19978](https://www.flux.ai/search?type=components&q=TDA19978) | HDMI 2.0 receiver (input) | 1 | | [TFP410](https://www.flux.ai/search?type=components&q=TFP410) | HDMI 2.0 transmitter (output) | 1 | | [TLV320AIC3101](https://www.flux.ai/search?type=components&q=TLV320AIC3101) | Audio codec for 3.5 mm jack & Bluetooth audio | 1 | | [Audio Jack 3.5mm](https://www.flux.ai/search?type=components&q=Audio%20Jack%203.5mm) | Headphone/mic port | 1 | | [SSD1306 OLED](https://www.flux.ai/search?type=components&q=SSD1306%20OLED) | Status display | 1 | --- ## 4. High-Level Design & Implementation Steps 1. **Schematic Creation** - Section off blocks: CPU + memory, power-supply, NVMe/USB bridge, MCU, wireless, USB hub, video, audio, I/O headers. - Place all parts from the list and wire per respective datasheet reference circuits. 2. **Power System** - Implement USB-C PD with STUSB4500 → buck/buck-boost & LDO rails. - Add LTC4412 to OR-ing battery pack into 6 V bus. - Include LTC3108 harvest input to 6 V bus (no recharge to AA). - Add decoupling & bulk caps per regulator datasheets; PTC fuses & ESD diodes on inputs. 3. **SoC & High-Speed Interfaces** - Break out Snapdragon 990 BGA with DDR4 routing (point-to-point). - Route PCIe Gen3 lanes to M.2 slot via JMS583 and to Titan Ridge for TB/eGPU. - Follow high-speed layout guidelines: impedance, length matching, EMI filters. 4. **MCU & Expansion Headers** - Place ATmega328P with UNO-style 2.54 mm headers; add ISP 6-pin, I²C pull-ups, reset circuit. 5. **Connectivity Blocks** - USB hub: TUSB8041 + ESD + chokes → five USB-A 3.0 ports. - Ethernet: RJ45 + magnetics + PHY; SFP cage + PHY/SFP interface. - Wireless: ESP32 module pad + SX1276 + antenna matching; program pads. 6. **Video & Audio** - HDMI RX (TDA19978) & TX (TFP410) blocks with TMDS ESD & termination. - Audio codec + 3.5 mm jack; route differential audio lines; add ESD. 7. **Display & Indicators** - SSD1306 OLED on I²C; add pull-ups & backlight power if needed. - LEDs for power, charge, status. 8. **PCB Layout & Mechanical** - Follow Raspberry Pi 2×20 header footprint & UNO shield hole pattern. - Add reinforcement for rugged use; standoffs at corners. - Define 4-layer stackup: • Top: signal • L2: GND • L3: PWR • Bottom: signal 9. **DRC/ERC Reviews** - Run ERC for decoupling, pull-ups, power nets. - Run DRC for high-speed clearance, differential pairs, via aspect ratios. 10. **Fabrication & Testing** - Export Gerbers, IPC-2581, BOM. - Prototype assembly; verify power sequencing, rails, interfaces. - Functional tests: USB-C PD negotiation, NVMe throughput, eGPU over TB3, wireless comm, audio, OLED. --- This spec sheet and part list should guide your Flux schematic and PCB layout workflow through to fabrication and validation. Let me know if you’d like to deep-dive into any specific block or review datasheet details next!... show more1 Star
Ultrasonic Distance Meter Reference Design
This circuit is an ultrasonic distance meter based on an ATTiny2313 microcontroller. It uses an HC-SR04 ultrasonic sensor to measure distance and displays the results on an OLED display. The power supply is constructed using a Boost converter (TPS613222A) and a 2-cell AA battery. Additionally, it also includes ISP for programming, RESET and START switches, and LED indicators. #project #Template #projectTemplate #ultrasonic #OLED #arduino #attiny2313 #TPS613222A #ISP #referenceDesign #simple-embedded #microchip #template #reference-design... show more1 Star
Boost converter for 3.3 volt
A Buck converter that can be power by Li-ion Battery and output 3.3 volt and 500mA Power by the TPS63051YFFR and the same package as a In the same as a Package as a standard dafruit buck converter. input Voltage Range : 3.3 v to 5.5 v... show more1 Star
5_15 PCB Routing - AutoLayout - Autoroute the GPIOs
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
5_12 PCB Routing - Fanouts
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
5_11 PCB Placement Updates
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
AvocAudio: A tinyML community board v3 Rev 1
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
5_01 PCB - Placement
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
Avocaudio (Modular) 04_18 Design Review
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
Avocaudio (Modular) 04_16 Mechanical
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
Avocaudio (Modular) 04_13 Microphone Done 047d
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
Avocaudio (Modular) 04_13 Microphone Done
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
Avocaudio (Modular) 04_12 External Flash
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
Avocaudio (Modular) 04_11 Done
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
Avocaudio (Modular) 04_08 Start
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
Avocaudio (Modular) 04_06 Done
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
Avocaudio (Modular) 04_05 Done
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
Avocaudio (Modular) 4_04 Start - MCU Placement
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
AvocAudio 02_02_Start
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #audioDevices #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
AvocAudio: A tinyML community board v2 Modules
AvocAudio is a compact tinyML community board designed for extensive audio data collection for various tinyML applications. It leverages the Raspberry Pi RP2040 and integrates a LoRa-E5 LoRaWAN Transceiver Module for connectivity. Equipped with an SD card slot for local data storage, the board ensures efficient data collection. The board operates on solar power or a lithium-ion battery, ensuring flexible and efficient energy use. #raspberryPi #rp2040 #lorawan #iot #solar... show more1 Star
[MEMEST] Real Professional Project
Arduino Uno shield used to monitor chimney smoke and provide feedback to stove. This shield powers the Arduino using TEGs and a battery. This shield provides power to an LED, fans, and a light sensor used to detect light intensity.... show more1 Star
Buck Boost Converter 3.3V 500mA
A buck boost converter that can be powered from a Li-Ion battery and output 3.3V @ 500mA. Powered by the TPS63051YFFR and in the same package as a standard adafruit buck converter . Input Voltage range : 2.5V to 5.5V... show more1 Star
low_power_Trigger_input_ESP8266
a ultra low power board for esp to perform a triggered task and can operate on a battery for years.1 Star
GPS Breakout - NEO-M9N, Chip Antenna (Qwiic)
NEO-M9N GPS Breakout with on-board chip antenna is a high quality GPS board with equally impressive configuration options. The NEO-M9N module is a 92-channel u-blox M9 engine GNSS receiver, meaning it can receive signals from the GPS, GLONASS, Galileo, and BeiDou constellations witn ~1.5 meter accuracy. This breakout supports concurrent reception of four GNSS. This maximizes position accuracy in challenging conditions, increasing precision and decreases lock time; and thanks to the onboard rechargeable battery, you'll have backup power enabling the GPS to get a hot lock within seconds! Additionally, this u-blox receiver supports I2C (u-blox calls this Display Data Channel) which made it perfect for the Qwiic compatibility so we don't have to use up our precious UART ports. Utilizing our handy Qwiic system, no soldering is required to connect it to the rest of your system. However, we still have broken out 0.1"-spaced pins in case you prefer to use a breadboard.... show more1 Star
E-ink Smart Thermostat Max
Smart Thermostat design using an ESP32 module for WiFi connectivity and a BME680 sensor for environmental monitoring. The user interface includes an E-ink display and an encoder for settings adjustment. Power: USB and Battery Movement sensor... show more1 Star
Design Challenge - Jacob Kelly
NRF52840 evaluation board with a battery charger (BQ24072), display(Adafruit 1.47" 172x320 ST7789), and a trackball sensor (PAT9130)1 Star
BQ25606 Reference Design
This project is a reference design based on the BQ25606, a single cell Li-Ion battery charger. It manages the power between an external power source (VIN), a Li-Ion battery (BAT), and a system power rail (SYS). Key features include power-path management, battery thermistor monitoring, and charge status indication. #project #BQ25606 #ReferenceDesign #charger #BatteryManagement #referenceDesign #bms #texas-instruments #template #reference-design #polygon... show more1 Star
TUSB8041IRGCR
The TUSB8041 by Texas Instruments is a highly integrated four-port USB 3.0 hub controller designed to facilitate high-speed data transfers and power management in computer systems, docking stations, monitors, and set-top boxes. This component offers simultaneous SuperSpeed USB (5 Gbps), high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) data connections, ensuring backward compatibility with USB 2.0 and USB 1.x devices. Key features include multi-transaction translation with four transaction translators, asynchronous endpoint buffers for improved data management, and comprehensive battery charging support compliant with various standards including CDP, DCP, and Chinese Telecommunications Industry Standard YD/T 1591-2009. Flexible power management options are available, catering to both per-port and ganged power control configurations, alongside over-current protection mechanisms. The device also supports custom configurations via OTP ROM, serial EEPROM, or I2C/SMBus interfaces, enabling customization for vendor IDs, product IDs, port specifics, and string descriptors. Ease of integration is further enhanced with the ability for on-board and in-system OTP/EEPROM programming via the USB 2.0 upstream port, and the device requires no special drivers, operating seamlessly with any OS that supports USB. Packaged in a compact 64-pin QFN format, the TUSB8041 is offered in both commercial (0℃ to 70℃) and industrial temperature (-40℃ to 85℃) ranges, ensuring robust performance across diverse environmental conditions. With a single clock input requirement and comprehensive system resource support, the TUSB8041 is ideal for developers aiming to implement high-performance and reliable USB hubs in their designs.... show more1 Star
ATtiny85 TinyCharger
TinyCharger is an ATtiny25/45/85-based, single-cell Li-ion battery charger with selectable charging current limit (100mA - 1000mA) and an OLED display for monitoring.... show more1 Star
ENVIRONMENTAL EXPOSURE RISK METER 6BLC
Environmental exposure risk measuring device based on ESP32, ultraviolet light (UV) and CO2 gas sensor modules. It has a voltage booster based on MT3608 chip and a solar panel lithium battery charger with MPPT based on CN3791 chip.... show more1 Star
The Green Dot 2040E5 Board nkFU
The "Green Dot 2040E5" Board is a Node that interfaces RS485 Sensor probes and can log information to the cloud using LoRa Connectivity. It uses the XIAO RP2040 and the LoRa-E5 (STM32WLE5JC) modules from Seeed Studio to do its magic. It also has amazing power management capabilities (Solar charging, Battery protection, etc) that make it very useful for IoT applications #Seeed #XIOA #LoRa #RP2040 #IoT... show more1 Star
Flight Controller
This is a custom flight controller based around a STM32F103C8T6. It contains a BMP280 to measure the altitude of a drone, an ICM-42688-P that contains an accelerometer and gyroscope for motion control. The input voltage should be 12V and is set up to work with a LiPo battery.... show more1 Star