TPS5420D reference design mZUY
This TPS5420D reference design is a step-down voltage regulator providing a stable 5V output from a higher input voltage. It uses capacitors, an inductor, and a diode for filtering and protection, with an EN terminal for control. Ideal for applications needing a regulated 5V supply. #referenceDesign #project #stepDown #voltageRegulator #5V #TPS5420 #powermanagement #texas-instruments #template #reference-design... show more21 Comments
TP4056 Type-C charger
Tiny USB type-C charger for Li-ion single cell charger based on TP4056 IC. Rprog setting output current to 900mA. VIN and BAT connector are block terminal connectors. #project #typec #charger #TP4056... show more12 Comments
Mono Audio Amp
20-W MONO CLASS-D AUDIO POWER AMPLIFIER with terminal block connector for a speaker #audioDevices11 Comments
TP4056 Reference Design
Reference design for Li-ion single cell charger based on TP4056 IC. Rprog setting output current to 900mA. VIN and BAT connector are block terminal connectors. #project #Template #referenceDesign #charger #TP4056 #referenceDesign #batterycharger #template #bms #reference-design #polygon... show more9 Comments
RT6150B-33-Reference-Design
Typical Application Circuit for RT6150B-33GQW, 1 Positive Fixed Output 3.3V 800mA. Input voltage 6V max. With JST connectors(Vin and +3V3) and with block terminal connectors(Vin and +3V3) #project-template #voltageregulator #switchingregulator #BuckBoost #project... show more8 Comments
sEMG_DAQ
sEMG-DAQ is a wearable 6 channel data acquisition unit for capturing surface electromyographic (sEMG) signals from human arm muscles using SJ2-3593D jack connectors while conditioning, digitizing, processing and transmitting them as sEMG data to an external AI accelerated board through an SM12B-SRSS IDC connector where AI models are run for various applications including robotic control, muscle signals medical assessment and gesture recognition. The board leverages an INA125P instrumentation amplifier together with filter stages utilizing LM324QT op-amps for conditioning and an STM32G4A1VET6 microcontroller for the digitization, processing and data transmission of the signals. Since AI models can only be as good as the data, the design of such a DAQ is necessary to ensure clean, reliable and real-time data for AI applications requiring sEMG data. The board also has USB-FS and JTAG to cater for debugging. The power (5V) is fed through a screw terminal and is regulated by two LDK320AM LDO regulators to offer 5V, 3.3V and 1.8V to meet the requirements of various components on the board.... show more5 Comments
UJA1166ATK Reference Design
This project is a reference design for a UJA1166ATK-based circuit, implementing CAN protocol interface with Wake-up, Inhibit, and Sleep functionality. CANBus have block terminal connector and surface mount test points. #referenceDesign #project #CANbus #interface #transceiverCircuit #UJA1166ATK #UJA1166ATK/0Z #referenceDesign #canbus #nxp #template #reference-design... show more5 Comments
TP4056 Type-C charger
Tiny USB type-C charger for Li-ion single cell charger based on TP4056 IC. Rprog setting output current to 900mA. VIN and BAT connector are block terminal connectors. #project #typec #charger #TP4056... show more4 Comments
ACS712 current sensor layout example
Compact ACS712 current sensor module, capable of measuring up to 20A of AC or DC current. The layout includes a 2-pin connector for the input current, a terminal for the output voltage, and two capacitors for noise reduction. #template #project #sensor #current_sensor #ACS712... show more3 Comments
L7805 Fixed output regulator poER
Linear Voltage Regulator with 1 Positive Fixed Output 5.0V. Input voltage 35V max With JST connectors(Vin and +5V) and with block terminal connectors(Vin and +5V) #project-template #voltageregulator #project... show more3 Comments
DB125-3.81-4P-GN-S
Straight 4 pin Pitch 3.81mm Screw terminal block #screwblock #connector #commonPartsLibrary1 Comment
oscilador 555
copilot Entiendo que deseas diseñar un oscilador utilizando el chip 555. Aquí están algunos pasos que puedes seguir para hacer esto. Conecta el pin 1 (GND) del IC 555 a la terminal negativa de tu fuente de alimentación (0V). Conecta el pin 8 (VCC) del IC 555 a la terminal positiva de tu fuente de alimentación (11V). Conecta la resistencia de 10kΩ (R1) entre el pin 8 (VCC) y el pin 7 (DISCHARGE) del 555. Conecta tu potenciómetro de 100kΩ (R2) entre el pin 7 (DISCHARGE) y el pin 6 (THRESHOLD) del 555. Junta los pines 2 (TRIGGER) y 6 (THRESHOLD) juntos y conecta los pines unidos al lado negativo de tu condensador de 10nF (C). Conecta el lado positivo del condensador de 10nF (C) a VCC (el pin 8). Conecta el pin 4 (RESET) al VCC si no quieres usar la función de reset. De lo contrario, puedes conectar una señal de reset aquí. Conecta el pin 3 (OUTPUT) del 555 al terminal positivo de tu resistencia de 470Ω. Conecta el otro terminal de la resistencia a tierra. El condensador de 10uF debe estar conectado en paralelo a la alimentación (entre VCC y GND) para suavizar cualquier ruido en la fuente de alimentación de 11V. Te sugiero que experimentes con el valor del potenciómetro (R2) hasta que consigas el Duty Cycle deseado. Por lo general, es posible cambiar la frecuencia del pulso y ajustar el Duty Cycle utilizando este control. Si, después de realizar estas conexiones y ajustes, aún no puedes obtener el Duty Cycle deseado, podría ser indicativo de que los valores de resistencia y condensador que tienes no son adecuados para tu rango de frecuencia y Duty Cycle objetivo. Para que obtengamos un Duty Cycle del 75%, necesitamos usar el chip 555 en modo astable y debemos calcular los valores de R1 y R2 (resistencia total de carga y descarga respectivamente) que nos ayude a conseguir esto. El tiempo de alta (T_high) y el tiempo de baja del ciclo (T_low) de la oscilación salen determinados por R1, R2, y C (el condensador). Se pueden usar las siguientes fórmulas para calcularlos: T_high = 0.693 * (R1 + R2) * C T_low = 0.693 * R2 * C Duty cycle = ( T_high ) / ( T_high + T_low ) Para un Duty Cycle de 0.75: Estableceremos R1 como la resistencia de 10 kilohmios que se proporcionó. Con el potenciómetro de 100 kilohmios como R2, podemos variarlo para ajustar el Duty Cycle según necesitemos hasta que se llegue a la relación deseada. Considerando que el condensador C es el condensador de 10 nF que se proporcionó, anteriores declaraciones son bajo supuesto que el tiempo de operación (T = T_high + T_low) caiga en un rango aceptable. Para el esquemático: Conecta VCC de tu 555 al terminal positivo de tu fuente de voltaje de 11V y GND a tierra. Conecta los pines 2 (TRIGGER) y 6 (THRESHOLD) juntos y al lado negativo de tu condensador de 10nF. Conecta el lado positivo del condensador a VCC. Conecta el pin 3 (OUTPUT) al terminal positivo de tu resistencia de 470 ohmios. Conecta el otro terminal de la resistencia a tierra. Conecta tu resistencia de 10 kilohmios entre VCC y los pines 2 y 6 del 555. Finalmente, conecta tu potenciómetro entre los pines 2 y 6 y el pin 7 (DISCHARGE) del 555. El condensador de 10uF debería estar conectado en paralelo a la alimentación para suavizar cualquier ruido en la alimentación de 11V. Estas son mis suposiciones y pasos sugeridos pero recuerda variar el potenciómetro hasta conseguir el Duty Cycle deseado en caso de no conseguirlo de forma inmediata. Si por alguna razón no puedes conseguir el Duty Cycle de 75%, es posible que las resistencias y condensadores proporcionados no sean los adecuados para el rango de frecuencia y Duty Cycle deseados. En tal caso, puede que tengas que utilizar otros valores de componentes.... show more1 Comment
BQ25504 LiFePO4 template
Ultra Low-Power Energy Harvester based on BQ25504 tuned for LiFePO4 battery (VBAT_OV = 3.6V) with terminal block connectors #template #solar... show more1 Comment
MAX1873TEEE Project
4 cells Multi-Chemistry Charger a battery voltage is adjusted to 4.2V (R7 and R8) with terminal block connections #project #batterycharger1 Comment
MAX1873TEEE Template
4 cells Multi-Chemistry Charger a battery voltage is adjusted to 4.2V (R7 and R8) with terminal block connections #template #project #batterycharger1 Comment
Thermocouple Amplifier AD8495 5ba4
The AD8495 K-type thermocouple amplifier from Analog Devices is so easy to use, we documented the whole thing on the back of the tiny PCB. Power the board with 3-18VDC and measure the output voltage on the OUT pin. You can easily convert the voltage to temperature with the following equation: Temperature = (Vout - 1.25) / 0.005 V. So for example, if the voltage is 1.5VDC, the temperature is (1.5 - 1.25) / 0.005 = 50°C with terminal block connections... show more1 Comment
MCP2544WFD Reference Design
This MCP2544WFD -based reference design is a CAN bus transceiver circuit, providing reliable data communication over the CAN network. The design features a range of capacitors and resistors to ensure signal integrity, and a NUP2105L for voltage protection. It's ideal for applications requiring reliable data communication in an automotive or industrial environment. CANBus have block terminal connector and surface mount test points. #referenceDesign #project #CANbus #interface #transceiverCircuit #MCP2544WFD #MCP2544WFDT-H/MNY #template #canbus #microchip #reference-design... show more1 Comment
AOZ2261AQI-15 Project
DC/DC synchronous buck regulator based on AOZ2261AQI-15 IC. Output voltage is 12V (R3 and R4) with terminal block connections #project #regulator #voltageregulator... show more1 Comment
282836-3
3 Position Wire to Board Terminal Block Horizontal with Board 0.197" (5.00mm) Through Hole #screwblock #connector #commonPartsLibrary1 Comment
L7805 Fixed output regulator vZnb
Linear Voltage Regulator with 1 Positive Fixed Output 5.0V. Input voltage 35V max With JST connectors(Vin and +5V) and with block terminal connectors(Vin and +5V) #project-template #voltageregulator #project... show more1 Comment
AOZ2261AQI-15 Template
DC/DC synchronous buck regulator based on AOZ2261AQI-15 IC. Output voltage is 12V (R3 and R4) with terminal block connections #template #project-template #regulator #voltageregulator... show more1 Comment
TPS62175 Project
Buck, Buck-Boost Switching Regulator Input Voltage Range 4.75V to 28V with 100% Duty Cycle Mode. Output 5V With JST connectors(Vin and Vout) and with block terminal connectors(Vin and Vout) #project-template #voltageregulator #project... show more1 Comment
L7805 Fixed output regulator
Linear Voltage Regulator with 1 Positive Fixed Output 5.0V. Input voltage 35V max With JST connectors(Vin and +5V) and with block terminal connectors(Vin and +5V) #project-template #voltageregulator #project... show more1 Comment
sEMG_DAQ
sEMG-DAQ is a wearable 6 channel data acquisition unit for capturing surface electromyographic (sEMG) signals from human arm muscles using SJ2-3593D jack connectors while conditioning, digitizing, processing and transmitting them as sEMG data to an external AI accelerated board through an SM12B-SRSS IDC connector where AI models are run for various applications including robotic control, muscle signals medical assessment and gesture recognition. The board leverages an INA125P instrumentation amplifier together with filter stages utilizing LM324QT op-amps for conditioning and an STM32G4A1VET6 microcontroller for the digitization, processing and data transmission of the signals. Since AI models can only be as good as the data, the design of such a DAQ is necessary to ensure clean, reliable and real-time data for AI applications requiring sEMG data. The board also has USB-FS and JTAG to cater for debugging. The power (5V) is fed through a screw terminal and is regulated by two LDK320AM LDO regulators to offer 5V, 3.3V and 1.8V to meet the requirements of various components on the board.... show more1 Comment
Quick Moccasin Replicator
Voice-Controlled LTE Print-on-Demand Terminal (Quectel EC800M + ESP32-WROOM-32D BT Printer Interface, Protected USB-C 5 V Input, Unified 3.3 V Logic Rail, 8.5 V/3 A Printer Supply with High-Side FET & Protections, Locked Display/Audio/Radio I/O — Layout-Ready) #EC800M #USB-C-Protected #3V3Only #8.5V3A #LockedI/O... show moreJamesProject Raspberry Pi 5 Hat
Raspberry Pi 5 Model Shield with Pinout and Edge Terminal Blocks (Expanded Bottom and Left Edges)Supporting Crimson Battle Mech
Entrada de Corriente y Fusible Qué hace: Es el punto de partida. La electricidad de 120V entra a tu prototipo. El fusible es el guardián de seguridad principal. Dónde se conecta: El Cable de Alimentación se conecta al enchufe de la pared. Dentro de la caja, el cable VIVO (el que lleva la potencia, usualmente negro o rojo) se conecta a una patita del Portafusible. Dónde termina: La otra patita del Portafusible es ahora la salida segura del cable VIVO. 2. Fuente de Poder (HLK-PM01) Qué hace: Es el "transformador" que alimenta al cerebro. Convierte los peligrosos 120V en 5V seguros. Dónde se conecta: Sus dos pines de entrada (AC) se conectan a los cables VIVO (justo después del fusible) y NEUTRO de la entrada de corriente. Dónde termina: Sus dos pines de salida (DC) entregan 5V. El pin +5V se conecta al pin VIN del ESP32. El pin GND (tierra) se conecta a un pin GND del ESP32. 3. Sensor de Voltaje (ZMPT101B) Qué hace: "Observa" el voltaje de la línea de 120V de forma segura. Dónde se conecta: Sus dos pines de entrada (AC) se conectan igual que la fuente de poder: al VIVO (después del fusible) y al NEUTRO. Dónde termina: Su pin de salida de señal (Aout o Signal) se conecta a un pin analógico del ESP32 (por ejemplo, GPIO35). También necesita alimentación, así que sus pines VCC y GND se conectan a los pines 3.3V y GND del ESP32. 4. Sensor de Corriente (WCS1600) Qué hace: "Siente" cuánta corriente (amperios) está pasando hacia la licuadora. Dónde se conecta: El cable VIVO de 120V (el que viene del fusible) pasa a través del agujero blanco del sensor. No se conecta eléctricamente, solo pasa por en medio. Dónde termina: La placa del sensor tiene 3 pines de control: VCC se conecta al pin 3.3V del ESP32. GND se conecta a un pin GND del ESP32. Aout (salida analógica) se conecta a otro pin analógico del ESP32 (por ejemplo, GPIO34). 5. Relé de Estado Sólido (SSR-25 DA) Qué hace: Es el interruptor inteligente. Actúa como una compuerta que abre o cierra el paso de la electricidad a la licuadora. Dónde se conecta: Lado de Potencia (AC): El cable VIVO (que ya pasó por el sensor de corriente) se conecta a uno de los terminales de alta potencia del SSR. Lado de Control (DC): El pin de control DC+ del SSR se conecta a un pin digital del ESP32 (por ejemplo, GPIO23). El pin DC- se conecta a un pin GND del ESP32. Dónde termina: El otro terminal de alta potencia del SSR se conecta al terminal "vivo" del tomacorriente final. 6. Tomacorriente de Salida (a la Licuadora) Qué hace: Es el enchufe final donde conectas tu aparato. Dónde se conecta: Su terminal VIVO recibe el cable que viene de la salida del SSR. Su terminal NEUTRO recibe el cable NEUTRO directamente desde la entrada de corriente principal. Dónde termina: ¡Aquí termina el viaje! La licuadora recibe la electricidad controlada y medida por tu prototipo.... show moreSmart Vending System Control Board
Designing a control board for a smart vending machine. Board will house an ESP32, AC and DC power supply, terminal port for stepper motor, MG990 servo motor, SIM7200 GSM module, 2004 LCD screen.... show moreSecret Crimson Hoverboard
Circuit Overview The circuit you're describing is a digital counter that uses an LDR (Light-Dependent Resistor) and a transistor to detect wheel rotations. The counter's output is then displayed on a seven-segment LED display. Here's a breakdown of the components and their roles: 1. Wheel Rotation Detection (LDR and Transistor) * LDR: The LDR acts as a sensor to detect changes in light intensity. You can mount it on the wheel' or near it, with a reflective or non-reflective surface attached to the wheel. As the wheel rotates, the LDR will be exposed to alternating light and dark conditions, causing its resistance to change. * Transistor: The transistor (e.g., a 2N2222 NPN BJT) is used as a switch or amplifier. The changing resistance of the LDR is used to control the base current of the transistor. When the LDR's resistance drops (more light), the transistor turns on, and when the resistance increases (less light), the transistor turns off. This converts the analog change in light into a digital ON/OFF signal (a pulse). 2. Counter (7490) * 7490 IC: This is a decade counter, meaning it can count from 0 to 9. The output of the transistor (the pulses) is fed into the clock input of the 7490. Each pulse represents one rotation of the wheel, and the 7490 increments its count accordingly. The 7490 has four outputs (Q0, Q1, Q2, Q3) that represent the BCD (Binary-Coded Decimal) equivalent of the count. 3. BCD to Seven-Segment Decoder (7446) * 7446 IC: The 7446 is a BCD-to-seven-segment decoder/driver. Its job is to take the 4-bit BCD output from the 7490 and convert it into a signal that can drive a seven-segment LED display. It has seven outputs (a, b, c, d, e, f, g), each corresponding to a segment of the LED display. 4. Seven-Segment LED Display * Seven-Segment Display: This display is used to show the count. The 7446's outputs are connected to the corresponding segments of the display. 5. Power Supply and Other Components * Power Supply: A regulated DC power supply (e.g., 5V) is needed to power all the ICs and components. * Resistors: Resistors are used for current limiting (e.g., for the LDR and the LED display) and biasing the transistor. * Capacitors: A capacitor might be used for debouncing the signal from the transistor to prevent multiple counts for a single rotation. Conceptual Connections Here is a step-by-step breakdown of how the components would be connected: * LDR and Transistor: * The LDR and a current-limiting resistor are connected in series across the power supply. * The junction between the LDR and the resistor is connected to the base of the NPN transistor. * The emitter of the transistor is connected to ground. * The collector of the transistor, with a pull-up resistor, becomes the output for the pulse signal. * Transistor to 7490: * The output from the transistor's collector is connected to the clock input of the 7490 IC. * The 7490's reset pins (MR and MS) should be connected to ground for normal counting operation. * 7490 to 7446: * The BCD outputs of the 7490 (Q0, Q1, Q2, Q3) are connected to the BCD inputs of the 7446 (A, B, C, D). * 7446 to Seven-Segment Display: * The outputs of the 7446 (a, b, c, d, e, f, g) are connected to the corresponding segments of the seven-segment display. * Crucially, you need to use current-limiting resistors (e.g., 330Ω) in series with each segment to protect the LEDs from high current. * The common terminal of the seven-segment display is connected to the power supply (for a common anode display) or ground (for a common cathode display). This setup creates a chain reaction: wheel rotation changes light, which changes LDR resistance, which turns the transistor on/off, generating a pulse. This pulse increments the 7490, and the 7490's output is decoded by the 7446, which then displays the count on the seven-segment LED.... show moreEmpirical Amaranth Universal Remote
Elementos necesarios en Proteus 8 Busca estos componentes en la biblioteca (modo "Pick Devices"): Conector J1772 – usa un conector genérico de 4 pines (como HEADER 4 o un DB9 si necesitas algo similar). Resistencias: R1: 150 Ω R2: 330 Ω R3: 150 Ω R4: 2.7 Ω Interruptor SPST o jumper simulando "Punto A", "Punto B" y "GND". Fuente de alimentación de 5V para simular BAT1. Ground (GND) para las conexiones a tierra. Batería (Battery) de 5V (puede ser una batería o una carga equivalente en Proteus). Indicador LED (opcional) si quieres ver visualmente la salida de carga o conexión. 🛠️ Pasos para construir el circuito Sección del conector (lado izquierdo) Coloca un conector de 4 pines y nómbralo "J1772". Conecta el primer pin a una fuente de 5V opcional (simulando señal de control). Añade las resistencias R1 (150Ω) y R2 (330Ω) en serie, con un nodo medio hacia “Punto A”. Conecta el otro lado de R1 a "Punto B". Conecta el otro extremo de R2 a tierra. Agrega interruptores SPST para "Punto A", "Punto B" y "GND" para simular las uniones cuando se conectan al cargador. Sección de carga (lado derecho) Coloca las resistencias R3 (150Ω) y R4 (2.7Ω) tal como en la imagen, entre el conector y la batería. Coloca una batería (BAT1) de 5V, y conecta el negativo a tierra. Asegúrate de cerrar correctamente los interruptores (simulando conexión). 🔄 Simulación Usa "Interactive Simulation" en Proteus. Agrega etiquetas como "PUNTO A", "PUNTO B", etc., si deseas facilitar el seguimiento. Observa cómo el voltaje pasa a través de las resistencias y carga la batería. Puedes usar voltímetros o osciloscopios virtuales para observar los cambios de voltaje y corriente. ✅ Consejos finales Si no encuentras la resistencia exacta de 2.7Ω, puedes colocar una personalizada. Puedes usar Virtual Terminal si quieres simular señales de comunicación en el conector. El conmutador central (como se muestra en la línea de puntos) puede implementarse con switches DPDT o nodos que conectes manualmente en la simulación.... show moreMono Audio Amp
20-W MONO CLASS-D AUDIO POWER AMPLIFIER with terminal block connector for a speaker #audioDevicesPotentiometer
A 3 terminal variable resistor in which the resistance is manually varied to control the flow of electric current. Acts as an adjustable voltage divider.AOZ2261AQI-15 Project Polygon
DC/DC synchronous buck regulator based on AOZ2261AQI-15 IC. Output voltage is 12V (R3 and R4) with terminal block connections #project #regulator #voltageregulator... show moreiot plant monitoring system
Project Title: Plant Monitoring and Irrigation System Overview: This system is based on the ESP32-S3 and is designed to manage irrigation for a multi-floor building. Key Features: Multi-Floor Operation: The system controls three separate floors. Each floor's irrigation can be managed independently. Irrigation and Pump Control: Each floor uses a solenoid valve to regulate water flow. The solenoid valves are operated via MOSFETs. A relay engages an AC water pump when a MOSFET triggers a solenoid valve. Hardware Interconnects: Screw Terminal connectors are added for connecting the solenoid valves and the motor pump. A DC Jack is included to supply power to the system. User Interface & Connectivity: Two JST connectors are provided for integrating an OLED display, a rotary encoder, and a pushbutton. Future enhancements may include the addition of soil moisture sensors. Remote Control: The system is designed for future integration with Blynk IoT. Blynk IoT will offer both manual control and timer-based irrigation modes for each floor.... show moreACS712 current sensor layout example
Compact ACS712 current sensor module, capable of measuring up to 20A of AC or DC current. The layout includes a 2-pin connector for the input current, a terminal for the output voltage, and two capacitors for noise reduction. #template #project #sensor #current_sensor #ACS712... show moreTP4056 Reference Design
Reference design for Li-ion single cell charger based on TP4056 IC. Rprog setting output current to 900mA. VIN and BAT connector are block terminal connectors. #project #Template #referenceDesign #charger #TP4056 #referenceDesign #batterycharger #template #bms #reference-design... show moreTP4056 Reference Design
Reference design for Li-ion single cell charger based on TP4056 IC. Rprog setting output current to 900mA. VIN and BAT connector are block terminal connectors. #project #Template #referenceDesign #charger #TP4056 #referenceDesign #batterycharger #template #bms #reference-design... show moreMono Audio Amp
20-W MONO CLASS-D AUDIO POWER AMPLIFIER with terminal block connector for a speaker #audioDevicesACS712 current sensor layout example
Compact ACS712 current sensor module, capable of measuring up to 20A of AC or DC current. The layout includes a 2-pin connector for the input current, a terminal for the output voltage, and two capacitors for noise reduction. #template #project #sensor #current_sensor #ACS712... show moreACS712 current sensor layout example
Compact ACS712 current sensor module, capable of measuring up to 20A of AC or DC current. The layout includes a 2-pin connector for the input current, a terminal for the output voltage, and two capacitors for noise reduction. #template #project #sensor #current_sensor #ACS712... show moreTP4056 Module
Reference design for Li-ion single cell charger based on TP4056 IC. Rprog setting output current to 900mA. VIN and BAT connector are block terminal connectors. #Template #module #referenceDesign #charger #TP4056 #reusable #module #batterycharger #sublayout... show morepresence-sensing-esp32-c3
A presence sensing device powered by a mean well AC DC converter with a ESP32 C3 for it's brain plus a ld2410 mmwave module. the relay can be used to switch mains power. the ld2410 is connected through the terminal connectors.... show moreCruel Tomato P.K.E. Meter
Accionador: Botón N.O. (Normalmente Abierto) - P1 Sensor 1: Botón N.O. (S1) - P2 Sensor 2: Botón N.O. (S2) - P3 NOT Gate: U1 XOR Gate: U2 AND Gate: U3 Foco: Salida representada con un LED - D1 Resistencias para los botones y el LED: R1, R2, R3, R4 Esquemático Conecte la alimentación VCC a los dos terminales de P1, P2, y P3 con resistencias pull-down R1, R2, y R3, respectivamente conectadas a tierra. Conecte el terminal normalmente abierto de P1 a la entrada del NOT U1. Conecte los terminales normalmente abiertos de P2 y P3 a las entradas del XOR U2. Conecte la salida del NOT U1 y XOR U2 a las entradas del AND U3. Conecte la salida del AND U3 al ánodo del LED D1, y conecte el cátodo del LED a tierra a través de la resistencia R4 para limitar la corriente.... show moreDB126V-5.0-3P-GN
Straight 3 pin 5mm 3-pin Pitch 5mm 15A 1.5 300V Screw terminal block 01x03 #screwblock #connector #commonPartsLibraryoscilador 555
copilot Entiendo que deseas diseñar un oscilador utilizando el chip 555. Aquí están algunos pasos que puedes seguir para hacer esto. Conecta el pin 1 (GND) del IC 555 a la terminal negativa de tu fuente de alimentación (0V). Conecta el pin 8 (VCC) del IC 555 a la terminal positiva de tu fuente de alimentación (11V). Conecta la resistencia de 10kΩ (R1) entre el pin 8 (VCC) y el pin 7 (DISCHARGE) del 555. Conecta tu potenciómetro de 100kΩ (R2) entre el pin 7 (DISCHARGE) y el pin 6 (THRESHOLD) del 555. Junta los pines 2 (TRIGGER) y 6 (THRESHOLD) juntos y conecta los pines unidos al lado negativo de tu condensador de 10nF (C). Conecta el lado positivo del condensador de 10nF (C) a VCC (el pin 8). Conecta el pin 4 (RESET) al VCC si no quieres usar la función de reset. De lo contrario, puedes conectar una señal de reset aquí. Conecta el pin 3 (OUTPUT) del 555 al terminal positivo de tu resistencia de 470Ω. Conecta el otro terminal de la resistencia a tierra. El condensador de 10uF debe estar conectado en paralelo a la alimentación (entre VCC y GND) para suavizar cualquier ruido en la fuente de alimentación de 11V. Te sugiero que experimentes con el valor del potenciómetro (R2) hasta que consigas el Duty Cycle deseado. Por lo general, es posible cambiar la frecuencia del pulso y ajustar el Duty Cycle utilizando este control. Si, después de realizar estas conexiones y ajustes, aún no puedes obtener el Duty Cycle deseado, podría ser indicativo de que los valores de resistencia y condensador que tienes no son adecuados para tu rango de frecuencia y Duty Cycle objetivo. Para que obtengamos un Duty Cycle del 75%, necesitamos usar el chip 555 en modo astable y debemos calcular los valores de R1 y R2 (resistencia total de carga y descarga respectivamente) que nos ayude a conseguir esto. El tiempo de alta (T_high) y el tiempo de baja del ciclo (T_low) de la oscilación salen determinados por R1, R2, y C (el condensador). Se pueden usar las siguientes fórmulas para calcularlos: T_high = 0.693 * (R1 + R2) * C T_low = 0.693 * R2 * C Duty cycle = ( T_high ) / ( T_high + T_low ) Para un Duty Cycle de 0.75: Estableceremos R1 como la resistencia de 10 kilohmios que se proporcionó. Con el potenciómetro de 100 kilohmios como R2, podemos variarlo para ajustar el Duty Cycle según necesitemos hasta que se llegue a la relación deseada. Considerando que el condensador C es el condensador de 10 nF que se proporcionó, anteriores declaraciones son bajo supuesto que el tiempo de operación (T = T_high + T_low) caiga en un rango aceptable. Para el esquemático: Conecta VCC de tu 555 al terminal positivo de tu fuente de voltaje de 11V y GND a tierra. Conecta los pines 2 (TRIGGER) y 6 (THRESHOLD) juntos y al lado negativo de tu condensador de 10nF. Conecta el lado positivo del condensador a VCC. Conecta el pin 3 (OUTPUT) al terminal positivo de tu resistencia de 470 ohmios. Conecta el otro terminal de la resistencia a tierra. Conecta tu resistencia de 10 kilohmios entre VCC y los pines 2 y 6 del 555. Finalmente, conecta tu potenciómetro entre los pines 2 y 6 y el pin 7 (DISCHARGE) del 555. El condensador de 10uF debería estar conectado en paralelo a la alimentación para suavizar cualquier ruido en la alimentación de 11V. Estas son mis suposiciones y pasos sugeridos pero recuerda variar el potenciómetro hasta conseguir el Duty Cycle deseado en caso de no conseguirlo de forma inmediata. Si por alguna razón no puedes conseguir el Duty Cycle de 75%, es posible que las resistencias y condensadores proporcionados no sean los adecuados para el rango de frecuencia y Duty Cycle deseados. En tal caso, puede que tengas que utilizar otros valores de componentes.... show moreLM2678SD-5.0 reference design
This LM2678SD-5.0 reference design is a step-down voltage regulator providing a stable 5V output from a higher input voltage. It uses capacitors, an inductor, and a diode for filtering and protection, with an ON/OFF terminal for control. Ideal for applications needing a regulated 5V supply. #referenceDesign #project #stepDown #voltageRegulator #5V #powermanagement #texas-instruments #template#reference-design #polygon... show moreL7805 Fixed output regulator
Linear Voltage Regulator with 1 Positive Fixed Output 5.0V. Input voltage 35V max With JST connectors(Vin and +5V) and with block terminal connectors(Vin and +5V) #project-template #voltageregulator #project... show moreL7805 Fixed output regulator pGT7
Linear Voltage Regulator with 1 Positive Fixed Output 5.0V. Input voltage 35V max With JST connectors(Vin and +5V) and with block terminal connectors(Vin and +5V) #project-template #voltageregulator #project... show more