Chat

Welcome to Flux

Treat Flux like your intern. Tell it what you'd like to build and it'll get to work. You can also ask it questions, brainstorm ideas, and teach it your preferences. Learn More

Design a blinking LED circuit
Read a datasheet
Design a block diagram
Find parts in the library
Help me brainstorm ideas

Ready.


necesito que coloques un potenciómetro digital en este código #define LED\_COUNT...

necesito que coloques un potenciómetro digital en este código #define LED_COUNT 4 const int ledPins[LED_COUNT] = {2, 3, 4, 5}; int brightness = 0; bool counting = false; int counter = 0;
void setup() { Serial.begin(9600); // Inicializa la comunicación serial for (int i = 0; i < LED_COUNT; i++) { pinMode(ledPins[i], OUTPUT); } }
void loop() { // Lee el valor del potenciómetro para ajustar brillo int potValue = analogRead(A0); brightness = map(potValue, 0, 1023, 0, 255);
if (Serial.available()) { char command = Serial.read(); if (command == 'p') { // Iniciar/Pausar contador counting = !counting; Serial.print("Estado: "); Serial.println(counting ? "PLAY" : "PAUSE"); } }
if (counting) { // Mostrar el contador en los LEDs for (int i = 0; i < LED_COUNT; i++) { digitalWrite(ledPins[i], bitRead(counter, i) ? HIGH : LOW); analogWrite(ledPins[i], brightness); // Ajusta el brillo de los LEDs }
// Envía el valor del contador al monitor serial
Serial.print("Contador: ");
Serial.println(counter);

// Incrementa el contador binario
counter = (counter + 1) % 16;
delay(1000); // Tiempo de espera entre cada incremento (1 segundo)
} }
1y
Para introducir un potenciómetro digital en tu código, primero hay que asegurarse de cómo vas a controlar ese potenciómetro. Los potenciómetros digitales comúnmente tienen interfaces como I2C o SPI para comunicación con microcontroladores.
Supongamos que estás usando un potenciómetro digital controlado por I2C. Necesitamos saber el modelo exacto para sugerirte una librería adecuada. Como no especificaste el modelo del potenciómetro, supongamos uno general, como el MCP4725MCP4725, que es un DAC y puede ser usado similarmente para el ajuste de voltaje (y por tanto de brillo).
Primero, necesitarás incluir la librería adecuada. Si usáramos la Adafruit MCP4725 como ejemplo, así sería la incorporación en tu código:

Cpp


#include 
#include 

Adafruit_MCP4725 dac;

// Define las variables
#define LED_COUNT 4
const int ledPins[LED_COUNT] = {2, 3, 4, 5};
int brightness = 0;
bool counting = false;
int counter = 0;

void setup() {
  Serial.begin(9600); // Inicializa la comunicación serial
  dac.begin(0x60); // Inicia el DAC en la dirección I2C 0x60

  for (int i = 0; i < LED_COUNT; i++) {
    pinMode(ledPins[i], OUTPUT);
  }
}

void loop() {
  // Lee el valor del potenciómetro y ajusta el DAC
  int potValue = analogRead(A0);
  brightness = map(potValue, 0, 1023, 0, 255);
  dac.setVoltage(brightness, false);

  if (Serial.available()) {
    char command = Serial.read();
    if (command == 'p') { // Iniciar/Pausar contador
      counting = !counting;
      Serial.print("Estado: ");
      Serial.println(counting ? "PLAY" : "PAUSE");
    }
  }

  if (counting) {
    // Mostrar el contador en los LEDs
    for (int i = 0; i < LED_COUNT; i++) {
      digitalWrite(ledPins[i], bitRead(counter, i) ? HIGH : LOW);
      analogWrite(ledPins[i], brightness); // Ajusta el brillo de los LEDs
    }

    // Envía el valor del contador al monitor serial
    Serial.print("Contador: ");
    Serial.println(counter);

    // Incrementa el contador binario
    counter = (counter + 1) % 16;
    delay(1000); // Tiempo de espera entre cada incremento (1 segundo)
  }
}
Consideraciones:
  • Biblioteca: Asegúrate de instalar la librería de Adafruit para el MCP4725MCP4725 desde el administrador de librerías del IDE de Arduino.
  • Conexiones: Conecta el potenciómetro a los pines I2C, normalmente SDA y SCL en el microcontrolador que estés utilizando.
  • Ajuste: Cambia la funcionalidad según el modelo de potenciómetro digital que estés usando.
Si estás utilizando otro método para controlar el potenciómetro o tienes más detalles sobre el componente, házmelo saber para ajustar el código adecuadamente.
1y
"#define LED\_COUNT 4 const int ledPins\[LED\_COUNT] = {2, 3, 4, 5}; int brightn...

"#define LED_COUNT 4 const int ledPins[LED_COUNT] = {2, 3, 4, 5}; int brightness = 0; bool counting = false; int counter = 0;
void setup() { Serial.begin(9600); // Inicializa la comunicación serial for (int i = 0; i < LED_COUNT; i++) { pinMode(ledPins[i], OUTPUT); } }
void loop() { // Lee el valor del potenciómetro para ajustar brillo int potValue = analogRead(A0); brightness = map(potValue, 0, 1023, 0, 255);
if (Serial.available()) { char command = Serial.read(); if (command == 'p') { // Iniciar/Pausar contador counting = !counting; Serial.print("Estado: "); Serial.println(counting ? "PLAY" : "PAUSE"); } }
if (counting) { // Mostrar el contador en los LEDs for (int i = 0; i < LED_COUNT; i++) { digitalWrite(ledPins[i], bitRead(counter, i) ? HIGH : LOW); analogWrite(ledPins[i], brightness); // Ajusta el brillo de los LEDs }
// Envía el valor del contador al monitor serial
Serial.print("Contador: ");
Serial.println(counter);

// Incrementa el contador binario
counter = (counter + 1) % 16;
delay(1000); // Tiempo de espera entre cada incremento (1 segundo)
} }
1y
This is an Arduino sketch to control four LEDs with adjustable brightness using a potentiometer. It also allows toggling a binary counter display on the LEDs via serial commands. Here's a summary of how the sketch works:
Key Features
  • LED Control: Four LEDs connected to pins 2, 3, 4, and 5.
  • Brightness Adjustment: A potentiometer connected to analog pin A0 to vary the brightness of the LEDs.
  • Serial Interface: The serial monitor is used to send commands to start or pause a binary counter.
  • Binary Counter: The LEDs display a binary count from 0 to 15.
Code Overview
  1. Define Constants & Variables:
    • LED_COUNT: Number of LEDs (4).
    • ledPins[]: Array holding the pin numbers for the LEDs.
    • brightness: Stores the brightness level, mapped from the analog reading.
    • counting: Boolean flag to indicate if the counter is active or paused.
    • counter: Holds the current value of the counter.
  2. setup() Function:
    • Initializes serial communication at 9600 baud.
    • Sets each LED pin as an OUTPUT.
  3. loop() Function:
    • Reads the potentiometer value and maps it to a 0-255 range for brightness.
    • Checks for serial input to toggle the counting state.
    • If counting is enabled, updates the LEDs to display the current counter value.
    • Outputs the counter value to the serial monitor and increments the counter with a 1-second delay.
Potential Improvements and Considerations
  • Debouncing Serial Commands: If multiple commands are rapidly sent, consider adding a debounce mechanism to prevent unintended state changes.
  • Dynamic Delay: The delay between counter increments could also be adjustable via another input.
Integration in a Project
  • Components Needed:
    • 4 LEDs (connect to digital pins 2-5).
    • A potentiometer (connect one terminal to 5V, the other to GND, and wiper to A0).
Would you like help with anything specific, such as making schematic connections or further optimizing this code?
1y
1


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

Profound Tan Battle Mech

Profound Tan Battle Mech
Description

Created
1 Contributor(s)
salixdude

Controls

Properties

Availability & Pricing

DistributorQty 1

Assets