Memoria para Operaciones Aritméticas

0:00

Autopilot
Trabajo realizado
  • Actualicé la descripción del proyecto para documentar la integración del registro de 4 bits SN74LS173 y el multiplexor 4-bit SN74LS157, incluyendo hashtags #4bitMemory, #Modulo16 y #Debounce.
Tareas pendientes
  1. Añadir propiedad “System Architecture” con el diagrama de flujo en mermaid.
  2. Incorporar los componentes:
    • Registro D de 4 bits SN74LS173.
    • Multiplexor 4-bit 2:1 SN74LS157.
    • Tres interruptores SPST para STORE, CLR y SELECT.
  3. Añadir componentes de soporte:
    • Cuatro condensadores de desacoplo de 0.1 µF.
    • Tres resistencias de pull-down de 10 kΩ.
    • Tres circuitos RC (1 kΩ + 100 nF) para anti-rebote en STORE, CLR y SELECT.
  4. Realizar todas las conexiones entre sumador/restador, registro, multiplexor y controles.
  5. Completar la revisión de esquemático (ERC/DRC).
  6. Verificación final de STORE, CLR y SELECT.
Revisión de criterios de éxito
  • ❌ Registro de 4 bits almacena y borra (CLR) correctamente.
  • ❌ Multiplexor selecciona entre operando externo y memorizado.
  • ❌ Señales STORE, CLR y SELECT con anti-rebote.
  • ❌ Sistema integrado funciona en rango 0–15 y muestra en displays.
Siguiente paso recomendado Agregar la propiedad de proyecto “System Architecture” y establecer su valor en el diagrama de flujo mermaid que muestra la interconexión de 74LS283, SN74LS173 y SN74LS157 con STORE, CLR y SELECT.
53 days

Started implementing a plan

# Goal

- Modify the existing SUMADOR Y RESTADOR project to be fully compatible with Proteus 8.0. This includes aligning the logic family to 5V TTL, adding a 4‑bit result memory (storing values 0–15) with STORE/CLR functionality, integrating a 4‑bit 2:1 MUX for operand selection via a SELECT signal, and implementing clean debounced controls.

# Implementation plan

1. **Standardize and Verify Power and Logic

1. Set all active components (e.g., 74LS283, 74LS86, 74LS48) to operate at a consistent +5V TTL level.

2. Confirm VCC and GND rails are explicitly defined and uniformly connected in the schematic.

2. **Proteus 8.0 Compatibility and 7‑Segment Displays

1. Ensure the BCD drivers and 7‑segment displays (common‑anode) are correctly paired and the 220Ω resistors remain on each segment.

2. Adjust any legacy configuration so that Proteus recognizes and simulates the parts accurately.

3. **Integrate the 4‑Bit Memory and 2:1 MUX

1. Add a 4‑bit D register (e.g., LS173) configured for 5V TTL with asynchronous clear for storing the result from the 74LS283 adder.

2. Insert a 4‑bit 2:1 MUX (e.g., LS157) to select between the adder output (SUM[3:0]) and the stored memory (MEM[3:0]).

3. Connect the adder outputs to the D register inputs and wire the register outputs into one input branch of the MUX. Wire the adder output directly to the other MUX branch.

4. Label nets as SUM[3:0] (adder outputs) and MEM[3:0] (memory outputs), with a control net SELECT to choose the MUX input.

4. **Implement Debounced Controls

1. Add hardware debouncing circuits (using RC networks with Schmitt trigger buffers or flip‑flop-based debouncers) for the STORE, CLR, and SELECT signals.

2. Wire the debounced STORE control to trigger the D register’s clock, and wire the CLR to asynchronously reset the memory.

3. Ensure the SELECT control is clean and directly controls the MUX selection input.

5. **Finalize Net Naming and Verification

1. Rename all relevant nets to follow standard conventions: A[3:0], B[3:0], SUM[3:0], MEM[3:0], CIN, and COUT.

2. Run ERC/DRC checks in Proteus to verify that all components (including the new memory and debouncing circuits) are correctly connected.

3. Prepare a Proteus wiring map to guide the user for direct download and use.

# Success criteria

- The project is fully compatible with Proteus 8.0 with standardized 5V TTL components.

- The added 4‑bit memory correctly stores values (0–15) from the adder, and the STORE/CLR functions operate as expected.

- The 4‑bit 2:1 MUX seamlessly selects between the adder output and stored memory based on the debounced SELECT signal.

- All nets are properly named (A[3:0], B[3:0], SUM[3:0], MEM[3:0], CIN, COUT) and verified by ERC/DRC.

- Clean, debounced control signals are incorporated with reliable STORE, CLR, and SELECT functionality.

52 days

0:00

Autopilot
I haven’t been able to make any changes because execution stopped prematurely (insufficient credits).
Work done
  • None of the implementation plan steps have been executed.
Success criteria
  • ❌ Proteus compatibility not achieved
  • ❌ 5 V TTL alignment not applied
  • ❌ 4-bit memory and MUX integration not added
  • ❌ Debounced controls not implemented
  • ❌ Net renaming and ERC/DRC verification not performed
Next recommended step Proceed with step 1 of your plan: define and connect explicit +5 V and GND rails, and set all IC power pins (74LS283, 74LS86, 74LS48, etc.) to +5 V TTL.
52 days

Ready.


R9
Resistance
220 Ω
74LS86
74LS283
SW1
S1
74LS48


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

SUMADOR Y RESTADOR

SUMADOR Y RESTADOR
Description

Created
Last updated by sagc
1 Contributor(s)
sagc

Controls

Properties

Role Details
4-bit sum/subtract unit with operand multiplexer, result register, and debounced modulo-16 operation using 74LS283 adder, 74LS173 register, 74LS157 multiplexer, and 74LS86 for arithmetic control and debouncing.
Integrated Circuit Type
Logic
Logic Function
Multi Function
Part Type
Integrated Circuit
Operating Voltage
5 V
Domain
Scientific
System Architecture
```mermaid flowchart TD LS283_O["74LS283 Sum/Diff Outputs\nA1-A4"] --> REG_D["SN74LS173 Data Inputs\nD0-D3"] REG_Q["SN74LS173 Outputs\nQ0-Q3"] --> MUX_IN["SN74LS157 Data Inputs\nD0-D3"] EXT_OP["External Operand Bus"] --> MUX_IN SELECT["SELECT"] --> MUX_SEL["SN74LS157 Select Pin"] MUX_IN --> MUX_Y["SN74LS157 Outputs\nY0-Y3"] MUX_Y --> LS283_A["74LS283 Inputs\nA1-A4"] STORE["STORE"] --> LOAD["SN74LS173 LOAD Pin"] CLR["CLR"] --> CLEAR["SN74LS173 CLEAR Pin"] ```
Role
Control Unit

Availability & Pricing

DistributorQty 1
Arrow$3.64–$5.52
Digi-Key$16.07–$29.56
LCSC$38.62–$40.86
Mouser$30.93
Verical$4.02–$8.15

Assets