Battery Capacity Inquiry

TASK 3: UPDATE PROJECT DOCUMENTATION
  1. Target: Locate the "Mechanical & Assembly Notes" text block (Module 7 documentation).
  2. Update Text: Update all existing references to the old battery capacity (450 mAh) to the new capacity: 300 mAh.
  3. Finalize Design Notes: Ensure the "DESIGN NOTES" section reflects the new capacity: "Battery: 300 mAh 3.7V LiPo (3.3V–4.2V range)."
View 1 Knowledge Suggestion
70 days

2:40

Speedy
Chat History
Project
Action

Checking if I can make the changes for you.

I can update the "Mechanical & Assembly Notes" for you by changing all references from 450 mAh to 300 mAh and updating the DESIGN NOTES section to:
"Battery: 300 mAh 3.7V LiPo (3.3V–4.2V range)."
Let me know if you want any wording changes before I make the update.
70 days

Updated project description

0:26

Updated to: "Mechanical & Assembly Notes

--- BEGIN NOTES FOR LAYOUT ENGINEER ---

PCB OUTLINE & SIZE STRATEGY:

Target Dimensions: 49mm × 35mm (Optimized for Hybrid RF)

Corners: Rounded R=2mm

Thickness: 1.6mm, 6-layer

Material: FR-4 TG170, ENIG finish

KEEPOUT ZONES (Silkscreen Reference):

1. BLE Antenna (Top-Right): 5mm x 5mm (Chip Antenna)

2. Cellular Antenna (Top-Left): 20mm x 10mm (Chip Antenna)

3. GNSS: NO PCB KEEPOUT (Connector only)

4. PPG Optical Path: 10mm diameter circle – No top-side components

SILKSCREEN LABELS:

"PawPulse Smart Collar - Dual-SoC"

"Rev A - EVT Prototype"

"© 2026 PawPulse"

"J3 - USB-C", "J4 - BATTERY", "J7 - NANO SIM", "J_GNSS - GNSS"

DESIGN NOTES:

SIZE OPTIMIZATION: Use 0201 components for signal lines. Use 0402/0603 for Power.

ANTENNA STRATEGY: Hybrid. On-board chips for BLE/Cellular. Off-board Active Patch for GNSS.

POWER SUPPLY: 3.3V (SoC I/O), 1.8V (SoC Core), 4.0V (Modem). Note: nRF9151 power is gated by nRF5340.

BATTERY: 300 mAh 3.7V LiPo (3.3V–4.2V range).

CRITICAL LAYOUT CONSIDERATIONS (Review from Module 5/6):

• AS7058 requires 0.2mm copper-filled via-in-pad.

• RF traces set to 50Ω on Layer 1.

• SAW FILTER (FILT1): Must be placed immediately after the J_GNSS connector.

• SHIELDING: Ensure the Shielding Can (SHIELD1) footprint is placed over the nRF9151 module.

• Layer 4 is isolated at 4.0V (dedicated to nRF9151 only).

--- END NOTES ---

#MechanicalDesign #AssemblyNotes #BatteryUpgrade #PCBLayout #SmartCollar #ElectronicsDesign"

70 days
can you add a note somewhere in the documentation that the battery and supporting components need to be added
View 1 Knowledge Suggestion
70 days

1:23

Speedy
Chat History
Project
Action

Checking if I can make the changes for you.

I can add a note in the Mechanical & Assembly Notes section stating that the battery and its supporting components still need to be added to the schematic/PCB. Let me know if you want specific wording, or I'll use a generic reminder note.
70 days

Updated project description

0:12

Updated to: "Project Description:

The Sweet Tomato Heat-Ray project focuses on the development of an advanced PCB design for the PawPulse Smart Collar – a dual-SoC device that integrates both BLE and cellular connectivity. The design features a compact 49mm x 35mm, 6-layer FR-4 board with optimized RF performance, robust power supply management, and critical layout considerations including precise keepout zones for antennas and optical paths. All mechanical and assembly aspects, including rounded corners and optimized signal routing using 0201, 0402, and 0603 components, have been meticulously documented.

Note: Please be aware that the battery and its supporting components are not yet included. It is essential to add these components in future revisions to ensure full functionality and compliance with power requirements.

#SmartCollar #PCBDesign #BatteryIntegration #ElectronicsDevelopment #RFDesign #InnovativeTech"

70 days

Ready.


U2
J1 GND - D1 2
R1
Resistance
500 Ω
C16
Capacitance
Capacitance
C14
Capacitance
Capacitance
J1 VBUS - D1 1
C11
Capacitance
Capacitance
J1 VBUS - D1 1
R7 P1 - TP9 1
TP7 1 - R5 P2
R3 P2 - GND GND
JMP_A, JMP_B, JMP_C
Resistance
500 Ω
U6 VOS - L3 P1
C27
Capacitance
Capacitance
L1 P2 - C9 P2
U6 VOS - L3 P1
R2, R3
Resistance
500 Ω
L2 P2 - C10 P2
R8 P1 - TP10 1
R1 P1 - U2 TS/MR
L2 P2 - C10 P2
J1 GND - D1 2
L2 P2 - C10 P2
L1 P2 - C9 P2
TP3
L1 P2 - C9 P2
L1 P2 - C9 P2
U1 VDD - U1 VDDH
C17
Capacitance
Capacitance
R3 P2 - GND GND
C7
Capacitance
Capacitance
R1 P1 - U2 TS/MR
C22
Capacitance
Capacitance
R2
Resistance
500 Ω
U6 VOS - L3 P1
U6 VOS - L3 P1
U6 VOS - L3 P1
TP8 1 - R6 P2
L1 P2 - C9 P2
C24
Capacitance
Capacitance
C25
Capacitance
Capacitance
TP7
U6 EN - J1 CC1
C4
Capacitance
Capacitance
TP1
R8
Resistance
500 Ω
L1 P2 - C9 P2
C6
Capacitance
Capacitance
J1 GND - D1 2
J1 GND - D1 2
U1 ~RESET - R4 P2
L2 P2 - C10 P2
R2, R3
Resistance
500 Ω
J1 GND - D1 2
C9
Capacitance
Capacitance
C18
Capacitance
Capacitance
L2 P2 - C10 P2
R3 P2 - GND GND
L1 P2 - C9 P2
L1 P2 - C9 P2
L1 P2 - C9 P2
C10
Capacitance
Capacitance
U6 VOS - L3 P1
TP5
R4
Resistance
500 Ω
J1 GND - D1 2
C20
Capacitance
Capacitance
R3
Resistance
500 Ω
J1 GND - D1 2
C_RF1
Capacitance
Capacitance
C23
Capacitance
Capacitance
U6 EN - J1 CC1
L1 P2 - C9 P2
R3 P2 - GND GND
R1 P1 - U2 TS/MR
R5
Resistance
500 Ω
C1 P2 - L1 P1
C29
Capacitance
Capacitance
J1 GND - D1 2
C2
Capacitance
Capacitance
C13
Capacitance
Capacitance
U2 BAT - Q1 S
TP6
U2 BAT - Q1 S
J1 GND - D1 2
R3 P2 - GND GND
R3 P2 - GND GND
U6 EN - J1 CC1
U2 BAT - Q1 S
R7
Resistance
500 Ω
R_ILIM
Resistance
500 Ω
R3 P2 - GND GND
J1 VBUS - D1 1
C21
Capacitance
Capacitance
TP2
C26
Capacitance
Capacitance
L1 P2 - C9 P2
L2 P2 - C10 P2
JMP_A, JMP_B, JMP_C
Resistance
500 Ω
J1 VBUS - D1 1
J1 GND - D1 2
TP7
C12
Capacitance
Capacitance
C15
Capacitance
Capacitance
JMP_A, JMP_B, JMP_C
Resistance
500 Ω
C5
Capacitance
Capacitance
TP4
L2 P2 - C10 P2
C19
Capacitance
Capacitance
C8
Capacitance
Capacitance
R6
Resistance
500 Ω
L1 P2 - C9 P2
U6 VOS - L3 P1
R3 P2 - GND GND
L2 P2 - C10 P2
L1 P2 - C9 P2
C3
Capacitance
Capacitance
C28
Capacitance
Capacitance
L1 P2 - C9 P2
L_RF
Inductance
Inductance
U3
J1
GND
L1
Inductance
Inductance
H1
Q1
D_ESD_RF
L2
Inductance
Inductance
J1
Capacitance
0.000000001 F
L3
Inductance
Inductance


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

Sweet Tomato Heat-Ray

Sweet Tomato Heat-Ray
Description

Created
Last updated by pawpulse
1 Contributor(s)
pawpulse

Controls

Properties

DRC_status
clear
resistor_power_rating
Not explicitly specified in properties or schematic context. Standard ERC review expects SMD resistors for signal/pull usage to be rated at least 1/16W (0603 package or larger commonly acceptable) unless significant current/power dissipation is expected. No high-power resistors are apparent in the power/charging paths.
airwires_remaining
0
last_airwire_DRC_ERC_run
all schematic airwires reconnected; DRC/airwire checks clear; no new shorts detected; no major new ERC issues
Battery Capacity
450 mAh
unresolved_ERC_issues
none
System Architecture
```mermaid graph LR subgraph nRF5340-QKAA-R7 MCU Block NRF5340["nRF5340-QKAA-R7"] VDD3V3((VCC_3V3)) VDD1V8((VCC_1V8)) CLK32M["32 MHz Crystal + 8pF Caps"] CLK32K["32.768 kHz Crystal + 7pF Caps"] RESET_CKT["Reset: 10kΩ PU, Btn, 100nF Debounce"] SWD_HDR["Tag-Connect TC2050 SWD Header"] UART["UART P0.00/P0.01 via 33Ω Series"] I2C["I2C P0.02/P0.03 with 4.7kΩ PU"] GPIO_EXT["Other GPIOs & Control Nets"] TP["Test Points"] end VDD3V3 --> NRF5340 VDD1V8 --> NRF5340 CLK32M --> NRF5340 CLK32K --> NRF5340 RESET_CKT --> NRF5340 SWD_HDR --> NRF5340 UART --> NRF5340 I2C --> NRF5340 GPIO_EXT --> NRF5340 NRF5340 --> TP ```
capacitor_voltage_rating
Not explicitly specified in properties. ERC best practices dictate voltage rating at least 2x expected operating rail. For 1.8V, 3.3V, 4V usage (VCC rails), minimum recommended is 10V, preferably 16V for margin. For VBUS (5V), use 10V or 16V caps. No capacitors are shown on nets above VBUS in this schematic.
pull_up_pull_down
R1, R2, and R3 implement pull-up or pull-down functions for logic/control lines (e.g. U2:TS/MR). ERC expects values typically in the 1k–100kΩ range for microcontroller logic. No values shown here, but usage appears correct; however, actual resistance values should be reviewed to ensure compliance with IC datasheets and timing/power requirements.
decoupling_caps
All major power rails and ICs have decoupling capacitors placed nearby, as evident by the numerous "Generic Capacitor" components (e.g., C1, C9, C10, C11, C12, C13, C14, etc.) on VCC and VBUS nets. Capacitance values are not shown in the schematic context above, but standard design practice assumes the use of 0.1uF to 1uF MLCC for each critical IC, which aligns with accepted ERC practices.
Schematic Note
Use short, symmetric traces for LFXO with a ground guard. Place the 100 nF decoupling capacitor within 1–2 mm of the mic's VCC pad and keep the mic top port free of copper. Keep the piezo loop as small as possible for optimal performance. Verify MCU sink current per-pin and overall LED current budget.
Documentation/Test Sheet
PCB Stackup & Rules

Availability & Pricing

DistributorQty 1
Arrow$17.56–$369.72
Digi-Key$22.91–$955.45
LCSC$32.90
Mouser$22.66–$48.16
TME$0.91
Verical$12.89–$86.53

Assets