Designing Buck Converter for Raspberry Pi

now make changes to my design Input voltage: 24 V Output voltage: 5 V Maximum output current: 5 A Switching frequency: 300kHz Inductor: 10 μH Output capacitor: 220 μF Diode: 1N5817 MOSFET: IRF540N To calculate the duty cycle (D) of the MOSFET: D = Vout / Vin = 5 / 12 = 0.4167 To calculate the peak inductor current (Ipk): Ipk = (Vout x D) / (L x (1 - D)) = (5 x 0.4167) / (10 x (1 - 0.4167)) = 1.39 A To calculate the RMS inductor current (Irms): Irms = (Ipk / sqrt(2)) x (D / (1 - D)) = (1.39 / sqrt(2)) x (0.4167 / (1 - 0.4167)) = 1.22 A To calculate the output capacitor ripple voltage (Vripple): Vripple = (Iout x (1 - D)) / (C x f) = (2 x (1 - 0.4167)) / (220 x 10^-6 x 100,000) = 0.072 V To calculate the power loss of the MOSFET: Ploss = (Ipk^2 x Rds(on)) / 2 = (1.39^2 x 0.077) / 2 = 0.078 W- BARGUNAN PONNUSAMY To calculate the power loss of the diode: Ploss = (Iout^2 x Rd) = (2^2 x 0.05) = 0.2 W Overall efficiency of the converter: η = (Pout / Pin) x 100% = (5 x 2 / 12 x 1.22) x 100% = 68.3%
93 days

2:01

General
Chat History
Project
Knowledge Base
Plan
Accessed Knowledge (5)

Using Knowledge Base Tool.

I’ll update your design to a 24 V → 5 V, 5 A buck at 300 kHz, replace unsuitable parts, add a proper regulator IC, and wire it to your terminals.
Planned changes:
  • Add a 5 A, 24 V-capable buck regulator IC (prefer synchronous). If asynchronous, add a ≥40 V, ≥5 A Schottky Diode; remove 1N5817 and IRF540N.
  • Keep 10 µH inductor but pick a part with Isat ≥ 1.2× peak and low DCR: 10uH Inductor.
  • Add input ceramics (10 µF 50 V X7R in parallel plus 100 nF) and output caps (low‑ESR ceramics + bulk, ≥1.5× Vout).
  • Set feedback for 5.0 V and program 300 kHz; wire to IN / IN - and OUT / OUT -. We’ll verify ripple (20–40% target) and ERC/DRC.
Note: your earlier math used 12 V; we’ll correct to 24 V and recompute duty, ripple, and peak currents accordingly.
Click Start on the plan bar to proceed, or tell me if you prefer an integrated synchronous IC or an async controller + external diode.
93 days

Started implementing a plan

# Goal

- Update the project to a 24 V to 5 V, 5 A buck converter operating at 300 kHz. Replace non-compliant parts (1N5817 and IRF540N), add a suitable integrated 5 A buck regulator IC, validate the 10 µH inductor ratings, add the required input/output capacitors and feedback network, and wire the schematic to the IN+/IN− and OUT+/OUT− terminals.

# Implementation plan

1. **Buck Regulator Update**

1. Select and add a 5 A buck regulator IC capable of 24 V input and 5 V output at 300 kHz (preferably with synchronous rectification to improve efficiency).

2. Configure the IC for the 5 V output and 300 kHz operating frequency. If the selected part is asynchronous, add a Schottky catch diode rated at ≥40 V and ≥5 A; otherwise, use the built-in synchronous rectification.

2. **Component Replacement and Validation**

1. Remove the existing 1N5817 Schottky diode and replace it with a proper ≥40 V, ≥5 A Schottky diode (if required by the design).

2. Remove the IRF540N MOSFET and ensure that the selected regulator either integrates a MOSFET or uses an external MOSFET that meets a 60 V, logic-level criterion if needed.

3. Validate and select a 10 µH inductor with Isat ≥1.2× the peak load current and low DCR, ensuring it meets the design’s requirements on ripple current (20–40% of full load).

3. **Supporting Components Addition**

1. Add input capacitors: parallel combination of a 10 µF (50 V, X7R) capacitor and a 100 nF ceramic capacitor for decoupling.

2. Add output capacitors: a combination of low-ESR ceramics and a bulk capacitor rated at ≥1.5× Vout.

3. Calculate and add the appropriate feedback resistors to set the 5 V output using the buck regulator’s feedback network.

4. **Schematic Connections and Checks**

1. Wire the new components and supporting parts as follows:

1. Connect all input components to the IN+ and IN− terminals.

2. Connect the output path (buck regulator, inductor, capacitors) to the OUT+ and OUT− terminals.

2. Run electrical rule checks (ERC) and design rule checks (DRC) to validate the schematic configuration.

# Success criteria

- A buck regulator assembly that meets the requirements: 24 V input, 5 V output, 5 A max, operating at 300 kHz.

- All replaced components (diode, MOSFET) and validated inductor ratings meet the design specifications.

- Proper input/output capacitors and a correctly set feedback network are added for stable operation.

- The schematic is fully wired with IN+/IN− and OUT+/OUT− connections and passes all ERC/DRC.

93 days

Ready.


IN +
OUT +
IN -
OUT -


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

LM2596 DC-DC buck converter

LM2596 DC-DC buck converter
Description

Created
Last updated by optimuscoderr
1 Contributor(s)
optimuscoderr

Controls

Properties

Part Type
Integrated Circuit
Manufacturer Name
Manufacturer Part Number
Datasheet URL
Designator Prefix
PS

Availability & Pricing

DistributorQty 1

Assets