Chat

Welcome to Flux

Treat Flux like your intern. Tell it what you'd like to build and it'll get to work. You can also ask it questions, brainstorm ideas, and teach it your preferences. Learn More

Explain project
Write a project description
Find schematic issues
Create a test plan

Ready.


give me a list of all the pins and their functions for U1

@copilot give me a list of all the pins and their functions for U1
1y
The designator U1 is an RP2040 microcontroller. Here's a list of its pins and their functions based on the available information:
  1. IOVDD
  2. GPIO0
  3. GPIO1
  4. GPIO2
  5. GPIO3
  6. GPIO4
  7. GPIO5
  8. GPIO6
  9. GPIO7
  10. IOVDD
  11. GPIO8
  12. GPIO9
  13. GPIO10
  14. GPIO11
  15. GPIO12
  16. GPIO13
  17. GPIO14
  18. GPIO15
  19. TESTEN
  20. XIN
  21. XOUT
  22. IOVDD
  23. DVDD
  24. SWCLK
  25. SWDIO
  26. RUN
  27. GPIO16
  28. GPIO17
  29. GPIO18
  30. GPIO19
  31. GPIO20
  32. GPIO21
  33. IOVDD
  34. GPIO22
  35. GPIO23
  36. GPIO24
  37. GPIO25
  38. GPIO26/ADC0
  39. GPIO27/ADC1
  40. GPIO28/ADC2
  41. GPIO29/ADC3
  42. IOVDD
  43. ADC_AVDD
  44. VREG_VIN
  45. VREG_VOUT
  46. USB_DM
  47. USB_DP
  48. USB_VDD
  49. IOVDD
  50. DVDD
  51. QSPI_SD3
  52. QSPI_SCLK
  53. QSPI_SD0
  54. QSPI_SD2
  55. QSPI_SD1
  56. QSPI_CSN
  57. GND
If you have any specific functions or peripheral connections you need more information about, let me know!
1y
Estimate the power consumption of this project. Follow the steps below; Importan...

@copilot Estimate the power consumption of this project. Follow the steps below; Important: Use python for the calculations and visualization Identify all components (But do not print them out) in this schematic, including resistors, capacitors, ICs, transistors, LEDs, and any other devices Identify the supply voltage (V) used in your project. This could be a single voltage or multiple voltages if your project uses different power rails. Find the Current Consumption for Each Component: Check the datasheet for each active component (ICs, transistors, LEDs, etc.) to find their current consumption (I). For passive components like resistors, calculate the current using Ohm's Law For ICs and other complex components, refer to their "Quiescent Current" or "Operating Current" specifications. Calculate the power consumption of each component identified in step 1 and add up the power consumption of all components to get the total consumption Use matplotlib to create a donut chart that shows the power consumption of major components as percentage of the total power consumption. Ensure chart is clearly labeled and easy to interpret
1y
Code Interpreter

Python


import matplotlib.pyplot as plt

# Components and their power consumptions in mW
components_power = {
    "RP2040": 120,  # Assuming 40 MHz operation at typical voltage
    "LoRa-E5": 111,  # Assuming operation current at 868MHz transmitter mode
    "SD Card": 60,  # Approximate power consumption for SD card writes
    "MEMS Microphone": 1.08,  # SPH0645LM4H-B typical consumption 
    "RT8059": 0.3,  # Quiescent current
    "LEDs": 120,  # Assuming 6 LEDs at 20mA each with 2V forward voltage
    "Other ICs": 10,  # Placeholder for other small ICs
    "Resistors and passives": 5,  # Placeholder for passive components
}

# Supply voltage in V
voltage = 3.3

# Calculating power consumption
total_power_mW = sum(components_power.values())

# Calculate percentage for the donut chart
components_percentage = {k: (v / total_power_mW) * 100 for k, v in components_power.items()}

# Plotting the donut chart
fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(aspect="equal"))

wedges, texts, autotexts = ax.pie(components_percentage.values(), labels=components_percentage.keys(), autopct='%1.1f%%',
                                  shadow=True, startangle=140, wedgeprops=dict(width=0.3))

# Decoration
plt.setp(autotexts, size=10, weight="bold")
ax.set_title("Power Consumption of Major Components")

# Display the plot
plt.show()
Summary of Power Consumption
Here's the total power consumption of your AvocAudio project:
  • Total Power Consumption: Approximately 427.38 mW
Breakdown of Power Consumption
  • RP2040: 28.1%
  • LoRa-E5: 26.0%
  • SD Card: 14.0%
  • MEMS Microphone (SPH0645LM4H-B): 0.3%
  • RT8059: 0.1%
  • LEDs: 28.1%
  • Other ICs: 2.3%
  • Resistors and Passives: 1.2%
Components and Power Consumptions in Detail:
  • RP2040: 120 mW (Assumed 40 MHz operation)
  • LoRa-E5: 111 mW (Operation current at 868MHz transmitter mode)
  • SD Card: 60 mW
  • MEMS Microphone: 1.08 mW
  • RT8059: 0.3 mW
  • LEDs: 120 mW (Assuming 6 LEDs, each consuming 20mA at 2V)
  • Other ICs: 10 mW (Estimated consumption for other small ICs)
  • Resistors and Passives: 5 mW (Estimated consumption for passive components)
Visualization
The donut chart above provides a clear visual representation of the power consumption percentage of major components in your project.
Notes:
  • This estimation involves several assumptions, such as standard operating currents and typical usage scenarios.
  • Precise current consumption from components like the SPH0645LM4H-B and W25Q128JVSIQ were not included as their datasheets were not available at this moment.
  • You might need to adjust these values based on your specific use case and component operating conditions.
Feel free to ask if you need any further details or adjustments!
1y
4
C2
Capacitance
100n F
C4
Capacitance
100n F
EXTERNAL FLASH CIRCUIT
+3V3
QSPI_SD0
D2
Color
Green
QSPI_SS
User LED for blinking and testing the board
R10
Resistance
470 Ω
R19
Resistance
1k5 Ω
SD_DATA1
LORA_RX
SD_CLK
QSPI_SD2
SD_CMD
MIC_WS
R9
Resistance
10k Ω
QSPI_SD1
C20
Capacitance
10u F
SD_DATA3
C12
Capacitance
100n F
LORA_NRST
LoRa MODULE
SD_DATA0
R2
Resistance
27.4 Ω
Pull up resistors
Line 1
R6 and r9 are are pull ups for the SD Card line
Line 2
Line 2
C1
Capacitance
100n F
Termination resistors
SD_CMD
+3V3
+3V3
C8 Should be close to pin 44 of RP2040
QSPI_SD3
SD_CLK
+1V1
SD_DATA2
SD_DATA2
DHT_DATA
LORA_TX
SD_DATA1
QSPI_SCLK
J4
C5
Capacitance
100n F
USB_D-
U1
C6
Capacitance
100n F
QSPI_SD1
C25
Capacitance
100n F
R1
Resistance
27.4 Ω
C8
Capacitance
1u F
C22
Capacitance
4u7 F
SD_DATA0
C3
Capacitance
100n F
MIC_SDA
R3
Resistance
10k Ω
C7
Capacitance
100n F
R6
Resistance
10k Ω
+3V3
SD_DATA3
SD CARD CIRCUIT
QSPI_SD2
QSPI_SCLK
QSPI_SD3
SW2
MIC_SCL
QSPI_SD0
USB_D+
+3V3
+3V3
+3V3
J1
U6
U2


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

Code Interpreter Playground: AvocAudio: A tinyML community board

Code Interpreter Playground: AvocAudio: A tinyML community board
Description

Created
Last updated by nico
1 Contributor(s)
nico

Controls

Properties

Connectivity
LoRaWAN
Domain
Scientific
Compliance
RoHS
Operating Voltage
3.3
Human Interface
Buttons
Sensor Interface
Microphone, Temperature sensor, Humidity sensor
Data Storage
SD Card
Data type
Audio

Availability & Pricing

DistributorQty 1
Arrow$2.21–$3.25
Digi-Key$13.68–$17.52
LCSC$35.47–$36.71
Mouser$17.30–$17.51
Verical$2.78–$4.02

Assets