• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
Welche Spannung kommt raus ! ??? LM567 darf maximal 8.5V haben. Eventuell Amplif...

Welche Spannung kommt raus ! ??? LM567 darf maximal 8.5V haben. Eventuell Amplifier hier schalten
1mo
Someone is typing...
Hier Ausgang aus Filter

Hier Ausgang aus Filter
1mo
Someone is typing...
6
@elieli123 Schauen wie man Funktionswelle auswählt und in Schaltplan wie Schalte...

@elieli123 Schauen wie man Funktionswelle auswählt und in Schaltplan wie Schalter integrieren
1mo
Someone is typing...
7
R5 ist der Steuer Poti, wird ersetzt durch Tastatur. @Elias Hier wird Tastatur a...

R5 ist der Steuer Poti, wird ersetzt durch Tastatur. @Elias Hier wird Tastatur angeschlossen. Tastatur muss Spannung ausgeben also variabel von 0V - 12V
1mo
Someone is typing...
4
@Lara

Someone is typing...
9
@lucluc007 Verstärker auslegen

@lucluc007 Verstärker auslegen
1mo
Someone is typing...
13
Eventuell kein Verstärker nötig ChatGPT meint Ausgangsspannung (Bei Test mit Osz...

Eventuell kein Verstärker nötig ChatGPT meint Ausgangsspannung (Bei Test mit Oszilloskop nur 200mV ???)von IC8038 sei nur etwas niedriger wie Eingangsspannung(12V?). Bei Filter das selbe. nach Filter kommt sowieso Hauptverstärker für Lautsprecher daher eventuell hier Verstärker nicht nötig.
1mo
Someone is typing...
11
Dieser Switch kann immer nur jeweils einen weg Schalten und nie zwei oder drei g...

Ist mir auch aufgefallen, man benötigt ON-ON-ON Schalter wie z.B.: SLW-161167-4A-N-D siehe: https://www.mouser.de/ProductDetail/Same-Sky/SLW-161167-4A-N-D?qs=IKkN%2F947nfAKZO5oVs2ubA%3D%3D
Dran denken bei Übernahme in Altium
1mo
Dieser Switch kann immer nur jeweils einen weg Schalten und nie zwei oder drei gleichzeitig!
1mo
Someone is typing...
12
Alle Pins von Potentiometer nutzen

Alle Pins von Potentiometer nutzen
1mo
Someone is typing...
15
Bei 100nF: 90-1500 \[Hz]

In Tönen:

  • 92,5 Hz = F#2
  • 1480 Hz = F#6
1mo
Bei 100nF: 90-1500 [Hz]
1mo
Someone is typing...
14
@Lukas Auslegung Kondensator C4 und Podi R9 von Filter

@Lukas Auslegung Kondensator C4 und Podi R9 von Filter
1mo
Someone is typing...
10
Hier Potentiometer (mit nur zwei Pins) --> fungiert als variabler Widerstand

Hier Potentiometer (mit nur zwei Pins) --> fungiert als variabler Widerstand
1mo
Someone is typing...
3
C2
Capacitance
0.0047u F
R4
Resistance
15K Ω
V1
R7
Resistance
15M Ω
R8
R6
Resistance
20k Ω
C1
Capacitance
0.1u F
R5

E-Technik_Projekt_Alte_Version

E-Technik_Projekt_Alte_Version
Created
November 5th 2024
Last updated by lucluc0007
a month ago
5 Contributor(s)
lucluc007
elieli123
luiswer
officerofhotblingblingandblabla
lucluc0007

Controls

Properties

Availability & Pricing

DistributorQty 1

Assets

    Simulation

    µs

    Simulation Speed

    with this schematic the icl8038 gives out a frequency of 20hz up to 20khz but I ...
    with this schematic the icl8038 gives out a frequency of 20hz up to 20khz but I just want it to give out 90hz apt to 900hz what should I do
    1mo
    do you know with what voltage the signal goes out of the icl8038
    @copilot do you know with what voltage the signal goes out of the icl8038
    1mo
    The ICL8038CCPD is a versatile function generator IC that can produce sine, square, and triangle waveforms. The output voltage amplitude typically depends on the power supply voltage and any external components you have connected. Here’s a general idea of the output voltage characteristics:

    • Sine Wave Output: The amplitude is typically close to the supply voltage, but it depends on the external resistors and capacitors connected to the ICL8038.
    • Triangle Wave Output: Generally, the amplitude of the triangle wave is slightly lower than the sine wave.
    • Square Wave Output: This is usually a rail-to-rail signal (close to the supply voltage levels).
    If you are operating the ICL8038 with a supply voltage of $V+$ and $V-$ (or ground), you can expect the output voltages to be proportional to these levels, adjusted by the gain settings of the external components.
    For precise values, you might need to look at the datasheet values and consider the external resistor and capacitor configurations you're using.
    1mo
    now I want to build In a ads o change my signals over an filter. the filter shou...
    @copilot now I want to build In a ads o change my signals over an filter. the filter should be controlled via the adsr
    1mo
    To accommodate an ADSR (Attack, Decay, Sustain, Release) envelope generator controlling a filter in your circuit, you'll need some additional components and connections. The ADSR will control the filter, modulating its parameters based on the envelope being generated. Here's a high-level plan:

    1. ADSR Envelope Generator: You may need an IC dedicated to generating ADSR envelopes or design a circuit using op-amps, capacitors, and resistors. A popular choice is the ADSR generator module, but you can create one using discrete components too.
    2. Filter: Decide on the type of filter you want, such as a low-pass, high-pass, or band-pass filter. This could be an operational amplifier filter or a digital filter implemented using a microcontroller or DSP.
    3. Connection Strategy:

      • The output of the ADSR envelope generator will control a parameter of the filter, such as the cutoff frequency in a low-pass filter.
      • Use a voltage-controlled filter (VCF), where the ADSR output can be applied as a control voltage.
    4. Integration:

      • Connect the output of the ADSR to the control input of the VCF.
      • Ensure that power supply considerations are taken into account for the ADSR IC and VCF if they require different voltage levels.
      • In your schematic, ensure the signal that needs to be filtered passes through the VCF.
    Here is a rough block diagram illustrating the connection:

    Image


    Signal_Input
    VCF
    ADSR
    Signal_Output

    • Signal_Input: This would be your existing signal.
    • VCF: Voltage-Controlled Filter where the filtering happens.
    • Signal_Output: The transformed signal output.
    Questions

    • What type of filter do you plan to use (e.g., low-pass, high-pass)?
    • Do you already have a specific ADSR IC or components you want to use?
    • Is the signal you wish to filter coming directly from the ICL8038CCPD in your project?
    Feel free to share more details, and we can refine the design further!
    1mo
    is there a filter for synthesizer I can use without a adsr und which I can change for example with a potentiometer
    1mo
    Yes, you can easily use a voltage-controlled filter (VCF) for your synthesizer that can be adjusted with a potentiometer, even without incorporating an ADSR envelope generator. A common choice for synthesizers is the low-pass filter, which allows you to manipulate the cutoff frequency using a potentiometer.
    Implementation Steps:

    1. Select a VCF: If you're looking for an integrated solution, some ICs are designed as VCFs, like the LM13700 dual operational transconductance amplifier. This IC can be used to build a VCF.
    2. Potentiometer Control: A potentiometer can be used to vary the control voltage applied to the VCF, effectively adjusting the cutoff frequency. You'll need to connect the potentiometer such that it can provide a variable voltage to the control pin of the VCF.
    3. Connection Strategy:

      • Use a potentiometer to adjust the control voltage.
      • Connect the wiper (middle pin) of the potentiometer to the control voltage input of the VCF.
    Example Components:

    • IC: Use the LM13700 for a simple VCF design.
    • Potentiometer: Use a suitable value, such as 100kΩ, to adjust the control voltage.
    Basic Connection Diagram:

    Image


    Signal_Input
    VCF
    Potentiometer
    Signal_Output

    • Signal_Input: Your audio source or the signal from your signal generator.
    • POT: The potentiometer adjusting the filter's control voltage.
    • Signal_Output: The filtered output signal.
    Steps to Build:

    • Connect the Signal: Route your input signal to the VCF input.
    • Adjust with Potentiometer: Use the potentiometer to provide a variable control voltage to the VCF.
    • Connect Output: The VCF output will provide your filtered signal.
    Questions

    • What type of filter frequency response are you interested in, e.g., low-pass, band-pass?
    • Do you have any specific requirements regarding the voltage levels or power supply?
    • Are you working with audio signals directly, or are you processing another type of signal?
    Let me know if you need more specific details or component recommendations!
    1mo
    Hi! I'm Copilot, I can help with your projects: To learn more, check out Gettin...
    Hi! I'm Copilot, I can help with your projects:
    @copilot can you partner up with me to design a PCB?
    @copilot give me a few architecture options for an affordable AI pendant.
    @copilot how can I build a schematic with Flux?
    To learn more, check out Getting Started with Copilot.
    1mo
    Someone is typing...
    Checks that the power traveling across a given resistor is under its rating with 50% headroom.
    Learn more
    Checks that IC pins that require pull up or pull down resistors have them.
    Learn more
    Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
    Checks that all parts have a part number and are available from distributors.
    Des
    Net
    Des
    Net
    P1
    Net 14
    DUTY CYCLE FREQUENCY ADJUST
    P2
    Net 10
    DUTY CYCLE FREQUENCY ADJUST
    P2
    Net 2
    Trace 5adf
    Net 10
    P2
    Net 3
    P3
    Net 4
    P2
    Net 3
    P1
    Net 2
    P2
    Net 3
    Trace 8721
    Net 2
    P3
    Net 4
    P1
    Net 2
    P3
    Net 4
    Trace 8721
    Net 2
    P1
    Net 10
    Trace 9e3c
    Net 5
    P2
    Net 8
    Trace 9e3c
    Net 5
    P2
    Net 8
    Trace afde
    Net 5
    P2
    Net 5
    P3
    Net 8
    Trace 8491
    Net 5
    P3
    Net 8
    P3
    Net 8
    P1
    Net 5
    Trace 3c28
    Net 11
    2
    Trace d650
    Net 2
    P1
    Net 4
    Trace 3c28
    Net 11
    Trace 912c
    Net 10
    Trace 90bf
    Net 10
    Trace 9e3c
    Net 5
    Reports parts that have no footprint.
    Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
    Reports components that have been modified using the "!important" flag.
    Designators
    Net
    A1, IN, A3, A2
    Net 9
    P1, T_CAP
    Net 14
    P2, LF_CAP
    Net 12
    P2, K
    Net 3
    P2, P2
    Net 3
    1, P1, P1, P2, ANODE, GND, P1
    Net 10
    3, T_RES
    Net 6
    SQUARE WAVE OUT, COM3, P2
    Net 13
    COM1, TRIANGLE OUT
    Net 20
    A, P1, P1, P2, CATHODE, FM SWEEP INPUT, VCC
    Net 5
    COM2, SINE WAVE OUT
    Net 21
    TIMING CAPACITOR, P2
    Net 7
    Reports nodes that are using rules that are not supported anymore.
    Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
    Detect any via, trace or copper fill island that is not connected to any net.