• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
create a detailed step by step plan table for this project to verify its functio...

@copilot create a detailed step by step plan table for this project to verify its functionality.
4mo
Let's create a detailed step-by-step plan for verifying the functionality of your audio electronics project. We'll focus on different stages like design, component verification, construction, and testing. Below is a table outlining the steps:

Table


StepDescriptionObjectives
1Initial Schematic DesignDesign the initial schematic including all components such as amplifiers, connectors, and input/output interfaces. Ensure that the Class D amplifier, Bluetooth module, and connectivity options are included.
2Component Selection and VerificationVerify component specifications like amplifier, LED, potentiometer, and others - ensuring they meet project requirements (e.g., RoHS compliance, operating voltage of 12V, frequency response).
3Simulate SchematicUse simulation tools to test the functionality of the schematic design. Check for any design flaws and ensure that the simulation results meet the project's frequency response and THD requirements.
4Prototype PCB LayoutImport the schematic into PCB design within Flux, considering placement and routing of components. Pay attention to minimizing noise, especially in the power and ground planes.
5Fabricate PCBSend the verified PCB design for fabrication. Include any specific requirements needed for Class D amplifiers, such as heat dissipation methods.
6Component SolderingAssemble the components on the fabricated PCB. Ensure correct orientation and soldering techniques are used, especially for components sensitive to heat.
7Initial Power-OnTest the board without connecting the audio inputs or outputs, checking power distribution and verifying operating voltage levels across the board.
8Functional TestingConnect audio inputs and outputs and play test audio. Verify that the amplifier operates correctly, observing output power, signal clarity, and overall operation.
9Bluetooth Connectivity VerificationTest the Bluetooth 5.0 module's pairing and connection functionality. Ensure stable connection and check audio quality over Bluetooth.
10Final System TestingRun a full system test, checking 3.5mm jack and screw terminal connectivity; verify that system operates within the specified temperature range and distortion thresholds.
11Compliance TestingEnsure that the system meets RoHS, FCC, and CE compliance requirements. Conduct electromagnetic interference (EMI) and compatibility testing.
12DocumentationDocument test results, including any deviations and the actions taken. Update the schematic and PCB files with any adjustments made during testing.
This plan provides a structure to verify the functionality of your audio electronics project step by step. Adjust steps as necessary based on the specific requirements and issues that arise during the design and testing processes.
4mo

Audio Electronics | Copilot Preset uTcw

Audio Electronics | Copilot Preset uTcw
Description

Created
October 1st 2024
Last updated by keifer
4 months ago
1 Contributor(s)
keifer

Controls

Properties

Domain Application
Audio
Compliance
RoHS, FCC, CE
Operating Voltage
12V
Operating Temperature
-40 ºC to 85ºC
Human Interface
LED, Potentiometer
Connectivity
Bluetooth 5.0, 3.5mm Jack, Screw Terminals
Amplifier Type
Class D
Input Source
Line-level from standard audio source
Output Power
Number of Channels
2 (stereo)
Distortion
THD of less than 0.1% at full power
Frequency Response
20Hz to 20kHz

Availability & Pricing

DistributorQty 1

Assets

Simulation

µs

Simulation Speed

Hi! I’m Copilot, I’m here to help you design your hardware projects. Ask me anyt...
Hi! I’m Copilot, I’m here to help you design your hardware projects. Ask me anything:
@copilot can you partner up with me to design a PCB?
@copilot give me a few architecture options for an affordable Al pendant using mermaid diagrams.
@copilot how can I build a schematic with Flux?
To learn more, check out Getting Started with Copilot.
4mo
Hazme un amplificador de audio
4mo
Perfecto, diseñaremos un amplificador de audio estéreo basado en tus requisitos del proyecto. Vamos a utilizar un amplificador de clase D, ya que es eficiente y adecuado para aplicaciones de audio. Aquí tienes los pasos que seguiremos:
  1. Seleccionar el IC de amplificación de clase D: Podemos considerar el uso del TPA3116D2, que es un amplificador de clase D con dos canales y ofrece buena calidad de sonido.
  2. Conexiones básicas:
    • Entrada de audio: Las entradas se conectarán al conector Jack de 3.5 mm y a las conexiones Bluetooth.
    • Salida de audio: Las salidas estarán conectadas a los terminales de tornillo.
    • Control de volumen: Utilizaremos un potenciómetro.
  3. Especificaciones del circuito:
    • Voltaje de operación: 12V
    • Respuesta de frecuencia: 20Hz a 20kHz
    • Distorsión armónica total (THD): Menos del 0.1% a plena potencia
  4. Componentes adicionales:
    • LED indicador: Muestra el estado de potencia o conexión.
    • Filtros de entrada y salida: Condensadores y bobinas para filtrar ruidos no deseados.
  5. Topología básica del circuito:
    • Entradas de audio: conectadas al TPA3116D2 para procesar la señal.
    • El potenciómetro: conectado a las entradas para controlar el volumen.
    • Condensadores de desacoplo: a la entrada de poder para estabilizar la fuente de alimentación.
    • Salidas hacia los altavoces: a través de filtros de paso bajo para suavizar la señal PWM de salida de clase D.
  6. Conexiones preliminares:
    • Conectar Entrada Jack/Bluetooth a TPA3116D2:IN1L, IN1R.
    • Conectar Potenciómetro al ajuste de volumen.
    • Conectar TPA3116D2:OUT1P, OUT1N a terminales de salida parlante.
    • Colocar condensadores de bypass cerca del IC para estabilidad.
¿Te gustaría proceder con algún diseño específico o necesitas más detalles sobre algún componente?
4mo
Reply
4mo
Para diseñar el amplificador de audio estéreo con un amplificador de clase D, aquí están los detalles y pasos resumidos:
  1. Seleccionar el IC de amplificación:
    • Usaremos un IC como el TPA3116D2, que proporciona dos canales, eficiente para aplicación de audio y cumple con las especificaciones de distorsión y frecuencia.
  2. Conexiones básicas:
    • Entrada de audio: a través de un conector Jack de 3.5 mm y conectividad Bluetooth.
    • Salida de audio: conectada a terminales de tornillo para los altavoces.
    • Control de volumen: mediante un potenciómetro.
  3. Especificaciones del circuito:
    • Voltaje de operación: 12V.
    • Respuesta de frecuencia: 20Hz a 20kHz.
    • Distorsión: THD < 0.1% a plena potencia.
  4. Componentes adicionales:
    • LED indicador: para mostrar el estado del dispositivo.
    • Filtros de entrada/salida: para eliminar ruidos no deseados.
  5. Conexiones preliminares:
    • Conectar Entrada Jack/Bluetooth a TPA3116D2:IN1L, IN1R.
    • Conectar Potenciómetro al ajuste de volumen.
    • Conectar TPA3116D2:OUT1P, OUT1N a terminales de salida parlante.
    • Colocar condensadores de bypass cerca del IC para estabilizar la fuente de alimentación.
Esto nos da una idea general para empezar a crear el esquema del circuito en Flux. ¿Te gustaría que te ayude a detallar algún paso o componente específico en el esquema?
4mo
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports components that have been modified using the "!important" flag.
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.