• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Audio Electronics | Copilot Preset

Audio Electronics | Copilot Preset
Description

Created
January 19th 2025
Last updated by jorge11rb
25 days ago
1 Contributor(s)
jorge11rb

Controls

Properties

Domain Application
Audio
Compliance
RoHS, FCC, CE
Operating Voltage
12V
Operating Temperature
-40 ºC to 85ºC
Human Interface
LED, Potentiometer
Connectivity
Bluetooth 5.0, 3.5mm Jack, Screw Terminals
Amplifier Type
Class D
Input Source
Line-level from standard audio source
Output Power
Number of Channels
2 (stereo)
Distortion
THD of less than 0.1% at full power
Frequency Response
20Hz to 20kHz

Availability & Pricing

DistributorQty 1

Assets

Simulation

µs

Simulation Speed

Conecta el sensor PIR al microcontrolador (puede ser un Arduino). Asegúrate de q...
@copilot * Conecta el sensor PIR al microcontrolador (puede ser un Arduino). Asegúrate de que el pin de salida del sensor PIR esté conectado a un pin digital de la placa, mientras que los pines de alimentación (VCC y GND) estén conectados correctamente a los 5V y GND del Arduino.
  • Conecta el servomotor a otro pin digital del Arduino, y asegúrate de que sus pines de alimentación también estén correctamente conectados a los 5V y GND.
24d
Para conectar el sensor PIR y el servomotor al microcontrolador Arduino, sigue estos pasos:
Sensor PIR
  • Pines del Sensor PIR: VCC, GND, y OUT.
  • Conexiones:
    • Conecta el pin VCC del sensor PIR al pin 5V del Arduino.
    • Conecta el pin GND del sensor PIR al pin GND del Arduino.
    • Conecta el pin OUT del sensor PIR a un pin digital del Arduino, por ejemplo, al pin D2.
Servomotor
  • Pines del Servomotor: VCC, GND, y Signal.
  • Conexiones:
    • Conecta el pin VCC del servomotor al pin 5V del Arduino.
    • Conecta el pin GND del servomotor al pin GND del Arduino.
    • Conecta el pin Signal del servomotor a otro pin digital del Arduino, por ejemplo, al pin D9.
Resumen de Conexiones
  • Sensor PIR:
    • Connect PIR:VCC to Arduino:5V.
    • Connect PIR:GND to Arduino:GND.
    • Connect PIR:OUT to Arduino:D2.
  • Servomotor:
    • Connect Servo:VCC to Arduino:5V.
    • Connect Servo:GND to Arduino:GND.
    • Connect Servo:Signal to Arduino:D9.
Si necesitas ajustar los pines utilizados para adaptarlos a tus necesidades específicas, házmelo saber.
24d
•Si el sensor PIR detecta movimiento, el servomotor debe moverse a un ángulo de 60 grados. •Si el sensor PIR no detecta movimiento, el servomotor debe moverse a un ángulo de 120 grados.
24d
Para implementar esta funcionalidad en un Arduino, debes escribir un código que lea la señal del sensor PIR y controle el servomotor en consecuencia. A continuación, te proporciono un ejemplo de cómo podría ser este código en el entorno de Arduino (IDE):

Cpp


#include 

Servo myServo;  // Crea un objeto servo para controlar un servomotor

const int pirPin = 2;  // Pin digital al que está conectado el pin OUT del PIR
const int servoPin = 9;  // Pin digital al que está conectado el pin Signal del servomotor

void setup() {
  pinMode(pirPin, INPUT);  // Configura el pin del PIR como entrada
  myServo.attach(servoPin);  // Asocia el objeto servo al pin del servomotor
}

void loop() {
  int pirState = digitalRead(pirPin);  // Lee el estado del sensor PIR

  if (pirState == HIGH) {
    // Si se detecta movimiento, mover el servomotor a 60 grados
    myServo.write(60);
  } else {
    // Si no se detecta movimiento, mover el servomotor a 120 grados
    myServo.write(120);
  }

  delay(1000);  // Pequeño retardo para estabilizar la lectura
}
Explicación del Código
  • Biblioteca Servo: La biblioteca Servo.h se usa para controlar el servomotor.
  • Pinout:
    • pirPin: Definido como el pin donde el sensor PIR envía su señal.
    • servoPin: Definido para enviar la señal de control al servomotor.
  • Configuración:
    • Se configura el pirPin como entrada.
    • Se asocia el servomotor al servoPin.
  • Bucle Principal:
    • Lee el estado del sensor PIR (alto o bajo).
    • Si detecta movimiento ($pirState == HIGH$), mueve el servomotor a 60 grados.
    • Si no hay movimiento, mueve el servomotor a 120 grados.
    • El retraso de 1000 ms (1 segundo) asegura que el servomotor tenga tiempo suficiente para completar su rotación antes de reevaluar el movimiento.
Puedes ajustar los ángulos o tiempos según sea necesario. Si tienes alguna otra pregunta o necesitas ajustes adicionales, ¡déjamelo saber!
24d
explain this project.
@copilot explain this project.
24d
This project involves designing audio electronics, likely focusing on applications like amplifiers, mixers, or processors. Here's a breakdown of the key aspects of the project:
Project Requirements:
  • Domain Application: Audio
  • Human Interface: Includes an LED and a potentiometer.
  • Compliance: Must comply with RoHS, FCC, and CE standards.
  • Amplifier Type: Class D, which is known for high efficiency and low heat generation.
  • Frequency Response: The audio equipment should have a frequency response ranging from 20 Hz to 20 kHz, which covers the full range of human hearing.
  • Distortion: The total harmonic distortion (THD) should be less than 0.1% at full power, ensuring high audio fidelity.
  • Operating Temperature: Needs to operate effectively within -40°C to 85°C.
  • Input Source: The input will be a line-level signal from a standard audio source like a smartphone or stereo system.
  • Connectivity: Includes Bluetooth 5.0, a 3.5mm audio jack, and screw terminals.
  • Number of Channels: It is a stereo system, so there are 2 channels.
  • Operating Voltage: The system will operate at 12V.
  • Output Power: Not specified yet, but it will influence the choice of amplifier components and design.
Additional Information:
  • There are no electrical connections currently made in this project, suggesting that the schematic and PCB layout have not been developed yet.
  • The presence of a human interface suggests this project might have a user interaction component, likely for controlling audio levels or other settings.
  • The use of Bluetooth implies wireless audio capability, suitable for modern audio equipment designs.
Would you like to focus on a specific aspect of this project or have specific questions about how to proceed with designing any part of it?
24d
Hi! I'm Copilot, I can help with your projects: To learn more, check out Gettin...
Hi! I'm Copilot, I can help with your projects:
@copilot explain this project.
@copilot are there any issues in this project?
@copilot how can I build a schematic with Flux?
To learn more, check out Getting Started with Copilot.
24d
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports components that have been modified using the "!important" flag.
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.