• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
SCL
OLED1
SDA
VBAT
VBAT
USER_1
VBAT
VBAT
RESET
BAT1
SDA
R3
Resistance
0 Ω
VBAT
SCK
USER_2
VBAT
VBAT
SCL
R5
Resistance
0 Ω
R1
Resistance
4.7k Ω
U1
C4
Capacitance
47u F
R6
Resistance
4.7k Ω
USER_1
SDA
VBAT
C3
Capacitance
0.1u F
VBAT
MOSI
MISO
VBAT
RESET
SCL
SDA
SCL
C2
Capacitance
0.1u F
RESET
GND
C1
Capacitance
47u F
RESET

Arduino Wearable Watch

Arduino Wearable Watch
Description

Created
October 18th 2024
Last updated by jharwinbarrozo
3 months ago
1 Contributor(s)
jharwinbarrozo

Controls

Availability & Pricing

DistributorQty 1
Arrow$1.25–$1.27
Digi-Key$2.07–$2.69
LCSC$3.68
Mouser$2.48
Verical$2.12–$3.43

Assets

Simulation

µs

Simulation Speed

create a detailed step by step plan table for this project to verify its functio...
@copilot create a detailed step by step plan table for this project to verify its functionality.
3mo
Here's a detailed step-by-step plan table to verify the functionality of the Arduino Wearable Watch project:

Table


StepDescriptionExpected Outcome
1Power Supply VerificationEnsure the Li-ion battery can supply the correct voltage and current. The typical output should be around 3.3V to 5V.
2Microcontroller CheckProgram the ATTINY85-20SU with a basic "blink" code using the ISP header to ensure the microcontroller is operational.
3OLED Display TestConnect the OLED SDA:P1 and SCL:P1 lines and upload a test pattern to display. Ensure the display shows a clear image.
4User Button TestVerify functionality of USER 1 and USER 2 buttons by connecting a multimeter to check for expected open/close behavior (usually toggling between high and low logic levels when pressed).
5Interfacing VerificationConnect components according to the schematic: some key connections are: Connect U1:VCC to VBAT:P1, GND to BAT1:NEG, OLED1:5V to VBAT:P1, OLED1:GND to GND, U1:GND to GND, USER 1:P2 and USER 2:P2 to GND.
6Functionality CheckProgram a simple interface that uses the two buttons to change output on the OLED. Verify changes occur as expected when the buttons are pressed.
7Battery Life TestingRun the device on battery until it is depleted to measure the expected battery life under normal operation.
8Firmware VerificationTest complete functionality by programming the device to cycle through challenges it should handle, e.g., display time, react to button presses, and go into a low power state.
9Signal Integrity TestingUse an oscilloscope to ensure clean signal lines for I2C communication between the ATTINY85 and OLED display.
This step-by-step plan should help ensure that each component and overall system work as expected. Let me know if there's anything else you'd like to add or adjust in this plan!
3mo
Hi! I’m Copilot, I’m here to help you design your hardware projects. Ask me anyt...
Hi! I’m Copilot, I’m here to help you design your hardware projects. Ask me anything:
@copilot explain this project.
@copilot are there any issues in this project?
@copilot how can I build a schematic with Flux?
To learn more, check out Getting Started with Copilot.
3mo
@copilot explain this project.
3mo
Sure, let's go through the details of your Arduino Watch Module project:
Overview

  • Purpose: This is a minimalist Arduino-based watch design.
  • Microcontroller: It features a Microchip ATTINY85-20SU microcontroller.
  • Display: There's an OLED display for visual output.
  • User Interface: The project includes two buttons for user interaction.
  • Power: The module is powered by a Li-ion battery.
  • Programming and Debugging: An ISP (In-System Programming) interface is provided for programming the microcontroller.
Main Components

  • Microcontroller: ATTINY85-20SU
  • OLED Display: Connected via I2C using SDA and SCL lines.
  • Buttons: Two buttons labeled USER 1 and USER 2 for user inputs.
  • Battery: Li-ion battery, specifically part number MY-2032-12.
  • Passive Components: Includes resistors and capacitors for proper circuit operation.
  • ISP Header: Used to program the ATTINY85.
Connections

  • Power and Ground: The battery provides power through the VBAT net, and the ground connections are unified under the GND net.
  • I2C Connection: The OLED display is connected to the microcontroller via the I2C interface using SDA and SCL nets.
  • Button Inputs: The buttons are connected to the microcontroller to provide user input functionalities.
Notable Design Details

  • Minimal Design: Focuses on minimal components for a compact wearable design.
  • License: This project is shared under the Creative Commons license, which allows for reuse and adaptation.
The project leverages the small form factor of the ATTINY85 microcontroller and uses common components to implement a basic watch. Is there anything specific you would like to go deeper into or any aspect you're curious about?
3mo
has que funcione la placa
3mo
Para asegurar que la placa funcione correctamente, hay varios aspectos que debes verificar en tu diseño:
Conexiones Eléctricas

  • Fuente de Alimentación: Verifica que el BAT1, la batería Li-ion, esté conectada correctamente al pin VCC del microcontrolador U1 e igualmente a otras partes que necesiten energía.
  • Conexiones a Tierra: Asegúrate de que todos los componentes que necesitan conexión a tierra estén adecuadamente conectados al net de GND.
  • Interfaz I2C: Verifica las conexiones de los pines SCL y SDA tanto en el OLED como en el microcontrolador. Deben estar conectados correctamente para que el bus I2C funcione.
Componentes Pasivos

  • Resistencias: Comprueba que las resistencias estén bien calculadas para su función en el circuito. En tu caso, los divisores de voltaje pueden requerir una atención especial dependiendo del rango de voltaje que deseas manejar.
  • Condensadores: Los condensadores desacopladores deberían estar cerca de los pines de alimentación del microcontrolador para una estabilidad óptima.
Programación

  • ISP Header: Asegúrate de que los pines de programación ISP estén correctamente conectados para poder cargar programas al ATTINY85.
Validación de Diseño

  • Simulación: Considera simular tu diseño en una herramienta de simulación de circuitos para identificar posibles problemas antes de fabricar la PCB.
  • Revisión: Haz una revisión minuciosa del diseño revisando cada conexión y net en el esquemático.
¿Te gustaría asistencia con algún aspecto específico, como la programación del microcontrolador o la optimización del diseño de PCB?
3mo
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Designator
Ruleset
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
Model
OLED Possition
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
-
Remove VALUEs
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
Layout
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.