Chat

Welcome to Flux

Treat Flux like your intern. Tell it what you'd like to build and it'll get to work. You can also ask it questions, brainstorm ideas, and teach it your preferences. Learn More

Explain project
Write a project description
Find schematic issues
Create a test plan
Operating conditions
Verify Part Details
Part Specifications
Recommend similar parts

Ready.



2y
Hello! How can I assist you with your electronic design today?

1

2y
It seems like your message might have been cut off. Could you please provide more information or clarify what assistance you need with your project?
2y
Someone is typing...
create a high level mermaid block diagram of this project. Include key component...

@copilot create a high level mermaid block diagram of this project. Include key component's manufacturer part number in each block whenever possible.
1y
Sure! First, let's identify the key components and their connections:
  • Flash Memory IC: Winbond 128Mb (16M x 8) SPI - Quad I/O, QPI 104 MHz 8-WSON (6x5)
    • Designators: VCC, GND, EP, D0, D1, CLK, ~CS, WP, HOLD
Here's a high-level block diagram using Mermaid syntax. Please note that we'll assume the connections are typical for an SPI interface.

Mermaid


graph TD
    A[Microcontroller] -->|SPI_CLK| B["Flash Memory IC\nWinbond node_128Mb"]
    A -->|SPI_MISO (D1)| B
    A -->|SPI_MOSI (D0)| B
    A -->|SPI_CS (~CS)| B
    A -->|WP| B
    A -->|HOLD| B
    B -->|VCC| C[3.3V Power Supply]
    B -->|GND| D[GND]
    B -->|EP (Connect to GND via PCB Pad)| D
Key Connections:
  • Flash Memory IC (Winbond 128Mb)
    • VCC (Pin 8): Connect to 3.3V Power Supply
    • GND (Pin 4): Connect to Ground
    • EP (Pin 9): Connect to Ground or leave unconnected according to layout requirements
    • D0 (Pin 5): SPI_MOSI from Microcontroller
    • D1 (Pin 2): SPI_MISO from Microcontroller
    • CLK (Pin 6): SPI_CLK from Microcontroller
    • ~CS (Pin 1): SPI_CS from Microcontroller
    • WP (Pin 3): Connect to Microcontroller (optional, for Write Protection)
    • HOLD (Pin 7): Connect to Microcontroller (optional, for Hold function)
Would you like additional details or any modifications to the block diagram?
1y
Someone is typing...
6
create a detailed step by step plan table for this project to verify its functio...

@copilot create a detailed step by step plan table for this project to verify its functionality.
1y
Creating a detailed, step-by-step plan to verify the functionality of your W25Q128FVPIQ TR flash memory project involves several key steps. Below is a suggested plan table including setting up the hardware, running initial tests, writing and reading data, and finally, a cleanup phase. Each step is designed to ensure that the W25Q128FVPIQ TR operates correctly within your project environment.
Step 1: Hardware Setup
  1. Power Supply Connections
    • Connect VCC to a 3.3V power supply.
    • Connect GND to the ground of your power source.
  2. Interface Connections
    • For a basic SPI setup, connect the ~CS (chip select), CLK (clock), D0 (MOSI), and D1 (MISO) pins to your microcontroller or SPI interface device.
    • Ensure that the WP (write protect) and HOLD pins are pulled high (to VCC) to prevent unintended write protection or pausing of the serial communication.
  3. Testing Environment Setup
    • Ensure that you have a logic analyzer or an oscilloscope connected to monitor the SPI communications. This is crucial for debugging.
    • Connect a microcontroller or a SPI interface tool to send and receive commands from the flash memory.
Step 2: Initial Test and Configuration
  1. Power-On Check
    • Verify that the power supply is correctly providing power to the VCC pin and that the GND connection is secure.
  2. SPI Communication Check
    • Send a basic command such as "Read Status Register" to ensure the SPI communication is established. Validate the response using the logic analyzer or oscilloscope.
Step 3: Write and Read Test
  1. Write Operation
    • Prepare a small data array to write to the memory. Ensure the write protection is disabled by checking the status register.
    • Execute the write command with the data array to a specific address, ensuring the ~CS is used correctly to start and end the transmission.
  2. Read Operation
    • Read back the data from the same address where the write operation was performed.
    • Compare the read data with the original data array to ensure integrity.
Step 4: Advanced Functionality Test (Optional)
  1. Quad SPI Test
    • If your project plans to use Quad SPI for faster data transfer, ensure D0 (IO0), D1 (IO1), WP (IO2), and HOLD (IO3) are connected and configured for Quad SPI mode.
    • Repeat the write and read test using Quad SPI mode.
  2. Deep Power-Down and Release
    • Implement and test the deep power-down command for power saving, followed by a release from power-down command to ensure the device can properly enter and exit low-power states.
Step 5: Cleanup and Final Verification
  1. Review and Debug
    • Review all test results. If any discrepancies or failures are found, debug as necessary. Check wiring, SPI configurations, and software commands.
  2. Final Verification
    • Perform a final comprehensive test encompassing power-on, write/read operations, and if applicable, Quad SPI and power-down functionalities.
Documentation
  • Document the Process
    • Keep detailed documentation of each step taken, including any issues encountered and how they were resolved. This will be valuable for future troubleshooting and as a part of the project documentation.
By following this step-by-step plan, you'll methodically verify the functionality of the W25Q128FVPIQ TR in your project, ensuring that each aspect of its operation is tested and confirmed to be working as expected.
1y
eu quero cria placa dedrone
1y
Para criar uma placa de drone no Flux, você precisa considerar alguns aspectos importantes, como a escolha dos componentes adequados, o layout da placa, e as conexões elétricas necessárias para garantir que seu drone funcione corretamente. Aqui está um plano passo a passo para ajudá-lo:
1. Definir Requisitos
  • Finalidade do Drone: Decida a aplicação do drone (fotografia, corrida, pesquisa, etc.).
  • Tamanho e Peso: Calcule o tamanho e o peso máximo do drone para escolher os componentes corretamente.
  • Autonomia de Voo: Defina a duração desejada para o voo.
2. Escolha dos Componentes Principais
  • Motores (M): Escolha motores potentes o suficiente para o peso do drone.
  • Controladora de Voo (U1): Escolha um modelo compatível com suas necessidades de controle.
  • ESCs (Electronic Speed Controllers) (U2, U3, U4, U5): Para controlar a velocidade de cada motor.
  • Bateria (BAT): Assegure-se de que a capacidade (mAh) e a tensão (V) são adequadas para a demanda de energia.
  • Receptor de Controle Remoto (U6): Escolha um compatível com seu transmissor.
3. Design do Esquema Elétrico no Flux
  • Para cada componente, adicione-os ao projeto e nomeie-os corretamente com seus designadores.
    • Conecte: A controladora de voo (U1) aos ESCs (U2, U3, U4, U5) e aos motores.
    • Conecte: A alimentação da bateria (BAT) à placa distribuidora de energia que alimenta os ESCs e a controladora de voo.
    • Conecte: O receptor de controle remoto (U6) à controladora de voo (U1).
4. Layout da PCB
  • Organize os componentes de maneira que a distribuição de peso seja equilibrada.
  • Os motores devem ser colocados nas extremidades da placa.
  • Use trilhas de cobre grossas para conexões de alta corrente (motores e bateria).
  • Adicione pontos de montagem para fixar a placa no chassi do drone.
5. Verificação e Testes
  • Revise o esquema e o layout para detectar possíveis erros.
  • Após a fabricação da PCB, solde todos os componentes.
  • Faça testes estáticos para verificar se não há curtos-circuitos.
  • Faça testes dinâmicos controlando os motores através da controladora de voo.
6. Integração e Testes de Voo
  • Monte a placa no chassi do drone.
  • Calibre os sensores da controladora de voo conforme necessário.
  • Realize testes de voo em espaço aberto, começando com voos curtos.
Lembre-se de consultar especificações detalhadas de cada componente e de seguir as regulamentações locais para operação de drones. Este planejamento é uma base geral; ajustes específicos podem ser necessários conforme seu projeto evolui.
1y
Someone is typing...
4
~CS
WP
HOLD
D0
EP
VCC
GND
D1
CLK
7
New Comment

Someone is typing...


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

W25Q128FVPIQ TR

W25Q128FVPIQ TR
Description

Created
Last updated by jecstronic
1 Contributor(s)
jecstronic

Controls

Properties

Part Type
Integrated Circuit
Manufacturer Name
Manufacturer Part Number
W25Q128FVPIQ TR
Designator Prefix
U

Availability & Pricing

DPNStockQty 1
10$0.00

Assets