IoT Environmental Monitor Architecture

0:43

Next gen (beta)
Project
Knowledge Base

Using Knowledge Base Tool.

Below is a clean, production-oriented system architecture for the EcoSense IoT Environmental Monitor, aligned with your project requirements. Based on knowledge base guidance, I’ve included USB protection best practices (PTC fuse, bidirectional low-capacitance TVS, common-mode choke), low-power architecture elements (low-Iq regulators, load switches for sensor power domains), and general ESD/layout guidance (solid ground plane).
Mermaid block diagram

Image


PCB Interconnect & Routing Block
Protection Block
Debugging & Programming Block
Clock & Timing Block
Processing & Logic Block
Communication Block
Input Block Sensors
Memory Block
Processing Unit Controller Block
Power Supply Block
Solid Ground Plane
Low Impedance Power Planes
Sensor Partitioning Analog Digital
ESD Arrays for IO and USB
Input Protection Schottky TVS PTC on External IOs
Thermal Management Block
Heat Spreader for Hot Sensors
On Board Thermal Sensing
Programming Header SWD UART
Diagnostic Logging Port
Main Crystal or TCXO
RTC Low Power Optional
Low Power Domain Control
Analog Front End Filters As Needed
Wi Fi 802.11 b g n
UART GPIO Interfaces
I2C Bus Shared
SPI Optional
Temperature Sensor High Precision
PM2.5 Optical Sensor
VOC Gas Sensor
CO2 Sensor
External Flash Optional
Wi Fi MCU SoC
USB C Power Input
PTC Resettable Fuse
Bidirectional TVS USB Data Power
USB Common Mode Choke
Power OR In Battery USB
Battery Charger IC
Li ion Battery Pack
Battery Protection Circuit
Low Iq Buck LDO Rails
Load Switches Sensor Power Domains
Fuel Gauge Battery Monitor
Power Supply Block
Protection Block
Processing Unit Controller Block
Memory Block
Input Block Sensors
Communication Block
Processing & Logic Block
Clock & Timing Block
Debugging & Programming Block
Thermal Management Block
PCB Interconnect & Routing Block
all
Notes and rationale anchored to knowledge base guidance
  • USB and ESD: The Flux knowledge base recommends PTC resettable fuses for overcurrent protection and placing the PTC right after the USB connector when using a power OR-ing device. It also recommends bidirectional TVS with capacitance below 1 pF per data line and a common-mode choke on USB to maintain signal integrity after TVS clamping. I’ve included all of these in Protection/Power.
  • Battery charging and user safety: The knowledge base suggests adding charging status indication, polarity protection, and battery protection when building chargers for inexperienced users. The CHG, PROT, and MON blocks account for this, with optional status LEDs/GPIOs to MCU.
  • Low-power architecture: For 30-day battery life, the knowledge base recommends sub-5 µA sleep using low-Iq regulators and load switches to fully power-gate sensor domains. The BREG and LSEN blocks enforce this, and LPCTRL ties MCU control to switches.
  • Grounding/EMC: The knowledge base cautions against star-point grounding for ESD; use a solid ground plane. The PCB block includes a continuous GND plane and explicit analog/digital partitioning around sensitive sensors.
If you want, I can adapt this into a concrete parts plan next:
  • Select a Wi-Fi MCU and crystal, a USB-C receptacle and protection chain, a charger + fuel gauge, low-Iq regulators, load switches, and representative sensors for PM2.5/VOC/CO2/temp.
Select Wi-Fi MCU
Choose Li-ion charger
Pick USB TVS
Define ground plane
Select load switch
140 days

Ready.


https://youtu.be/iGJOzVf0o7o

1y


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

[Demo] Architecture Brainstorm

[Demo] Architecture Brainstorm
Description

Created
Last updated by nico
1 Contributor(s)
nico

Controls

Properties

Sensors
High-precision temperature sensor, PM2.5 sensor, VOC sensor, and CO2 sensor.
Connectivity
Wi-Fi 802.11 b/g/n
Power Requirements
Rechargeable battery with a USB-C charging port.
Accuracy
Temperature sensor accuracy of ±0.5°C, PM2.5 sensor accuracy within ±10 µg/m³
Battery Life
Minimum of 30 days on a single charge under normal usage.
Operating Temperature
-10°C to 50°C
Humidity
10% to 90% non-condensing
Capacitor Derating
Derate max voltage to 60%
Resistor Tolerance
All resistors should be 1%

Availability & Pricing

DistributorQty 1

Assets