Chat
Welcome to Flux
Treat Flux like your intern. Tell it what you'd like to build and it'll get to work. You can also ask it questions, brainstorm ideas, and teach it your preferences. Learn More
Ready.
3. Comparison of Calculated Values and Design ValuesPython
# Define the given parameters Vf = 2.95 # Forward voltage in Volts If = 65e-3 # Forward current in Amperes V_supply = 3.3 # Power supply voltage in Volts # Calculate the required resistance value for the current limiting resistor R_limit = (V_supply - Vf) / If # Calculate the power rating of the resistor P_resistor = (If ** 2) * R_limit # Determine the acceptable range (±50%) for the resistance value R_min = R_limit * 0.5 R_max = R_limit * 1.5 # Determine the acceptable range for the power rating P_min = P_resistor * 0.5 P_max = P_resistor * 1.5 # The actual resistor value from the project's schematic (in ohms) R_actual = 1000 # 1K ohm resistor # Store the calculated and actual values for reporting calculated_values = { 'R_limit': R_limit, 'P_resistor': P_resistor, 'R_min': R_min, 'R_max': R_max, 'P_min': P_min, 'P_max': P_max, 'R_actual': R_actual } calculated_values
Table
| LED Designator | Current Limiting Resistor Designator | Forward Voltage (Vf) | Forward Current (If) | Power Supply Voltage | Allowed Calculated Resistance Value Range (Ω) | Actual Resistance Value (Ω) | Calculated Power Rating Range (W) | Actual Power Rating (W) | Notes |
|---|---|---|---|---|---|---|---|---|---|
| LED1 | R1 | 2.95V | 65mA | 3.3V | 2.69 - 8.08 | 1000 | 11.37mW - 34.12mW | 250mW | Needs adjustment |
Step 2: Frequency Response CalculationPython
import numpy as np import matplotlib.pyplot as plt from scipy.signal import lti, step, bode # Given component values R = 1e3 # Resistance in ohms C = 1e-6 # Capacitance in farads # Calculate cutoff frequency fc = 1 / (2 * np.pi * R * C) fc # in Hz
Step 3: Step Response AnalysisPython
# Transfer function for RC low-pass filter is: H(s) = 1 / (RCs + 1) # where s = jω H = lti([1], [R*C, 1]) # Frequency response frequencies = np.logspace(1, 6, num=500) # Frequency range from 10 Hz to 1 MHz w, mag, phase = bode(H, frequencies*2*np.pi) # Plot Bode magnitude and phase plots plt.figure(figsize=(12, 8)) # Magnitude plot plt.subplot(2, 1, 1) plt.semilogx(w/(2*np.pi), mag) # convert angular frequency to Hz plt.axvline(fc, color='r', linestyle='--', label=f'Cutoff Frequency: {fc:.2f} Hz') plt.title('Bode Plot') plt.ylabel('Magnitude (dB)') plt.grid(True) plt.legend() # Phase plot plt.subplot(2, 1, 2) plt.semilogx(w/(2*np.pi), phase) plt.axvline(fc, color='r', linestyle='--', label=f'Cutoff Frequency: {fc:.2f} Hz') plt.ylabel('Phase (degrees)') plt.xlabel('Frequency (Hz)') plt.grid(True) plt.legend() plt.show()
Step 4: Documentation and VisualizationPython
# Step response simulation time = np.linspace(0, 0.01, num=5000) # Time vector for simulation t, y = step(H, T=time) # Plot step response plt.figure(figsize=(10, 6)) plt.plot(t, y) plt.title('Step Response') plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.grid(True) plt.show()
Python
# Calculation of cutoff frequency import numpy as np # Given component values R = 1e3 # Resistor value in ohms C = 1e-6 # Capacitor value in farads # Calculate cutoff frequency fc = 1 / (2 * np.pi * R * C) fc # in Hz
Frequency Response VisualizationPython
import matplotlib.pyplot as plt from scipy.signal import lti, bode # Transfer function for RC low-pass filter is: H(s) = 1 / (RCs + 1) # where s = jω H = lti([1], [R*C, 1]) # Frequency response frequencies = np.logspace(1, 6, num=500) # Frequency range from 10 Hz to 1 MHz w, mag, phase = bode(H, frequencies*2*np.pi) # Plot Bode magnitude and phase plots plt.figure(figsize=(12, 8)) # Magnitude plot plt.subplot(2, 1, 1) plt.semilogx(w/(2*np.pi), mag) # convert angular frequency to Hz plt.axvline(fc, color='r', linestyle='--', label=f'Cutoff Frequency: {fc:.2f} Hz') plt.title('Bode Plot') plt.ylabel('Magnitude (dB)') plt.grid(True) plt.legend() # Phase plot plt.subplot(2, 1, 2) plt.semilogx(w/(2*np.pi), phase) plt.axvline(fc, color='r', linestyle='--', label=f'Cutoff Frequency: {fc:.2f} Hz') plt.ylabel('Phase (degrees)') plt.xlabel('Frequency (Hz)') plt.grid(True) plt.legend() plt.show()
Python
import numpy as np import matplotlib.pyplot as plt from scipy.signal import lti, step, bode # Given component values for consistency R = 1e3 # Resistance in ohms C = 1e-6 # Capacitance in farads # Create the transfer function H(s) = 1 / (RCs + 1) H = lti([1], [R*C, 1]) # Step response simulation time = np.linspace(0, 0.01, num=5000) # Time vector for simulation t, y = step(H, T=time) # Plot step response plt.figure(figsize=(10, 6)) plt.plot(t, y) plt.title('Step Response') plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.grid(True) plt.show()
Visualization Summary Table
| Visualization | Description |
|---|---|
| Cutoff Frequency | The point at which the filter starts attenuating the input signal. fc≈159.15 Hz. |
| Bode Plot | Magnitude Response: Attenuation of signal amplitude across frequencies. Phase Response: Phase shift introduced by the filter. |
| Step Response | Time-domain response of the filter to a step input. Shows rise time, settling time, and overshoot. |
Reviews
Des | Net | Des | Net | ... | |
|---|---|---|---|---|---|
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
None | |||||
Designator | Ruleset | |
|---|---|---|
Name | |
|---|---|
Designator | MPN | |
|---|---|---|
None | ||
None | ||
None | ||
None | ||
None | ||
None | ||
None | ||
None | ||
None |
Inspect
ENVIRONMENTAL EXPOSURE RISK METER
Controls
Properties
Availability & Pricing
| Distributor | Qty 1 | |
|---|---|---|
| Arrow | $0.40–$0.79 | |
| Digi-Key | $1.35–$9.56 | |
| LCSC | $6.20–$6.34 | |
| Mouser | $0.92 | |
| Verical | $0.33–$0.86 | |
Assets
Welcome 👋
Flux helps you build PCBs faster with an AI teammate!
Create your account to collaborate, stay updated, fork your own version, and get instant answers from our AI agent.
collinsemasi
copilot