Chat

Welcome to Flux

Treat Flux like your intern. Tell it what you'd like to build and it'll get to work. You can also ask it questions, brainstorm ideas, and teach it your preferences. Learn More

Explain project
Write a project description
Find schematic issues
Create a test plan

Ready.


recommend a replacement for V2.

@copilot recommend a replacement for V2.
1y
Considering the requirements listed for V2, which has properties indicating it is a voltage source with a voltage rating of 5V, here are a few assumptions and suggestions for a replacement or equivalent component:
  • Assumption: V2 is a 5V voltage source. Given the context of a simple electronic project that includes elements like resistors, a diode, and a triac, this could likely be a DC power supply voltage for the circuit.
Here are a few recommendations based on this assumption:
  1. Fixed Voltage Regulator: If you're looking for a stable 5V output and your input voltage is higher than 5V, consider using a fixed voltage regulator such as the L7805CV. It is a popular 5V positive voltage regulator, capable of delivering up to 1A of current which might be sufficient for your project.
  2. USB Power Supply: For projects that require portability or are low-power, using a standard USB power supply can be an excellent choice. Most USB outputs provide a stable 5V supply, and USB power banks or adapters are readily available and easy to integrate.
  3. DC-DC Converters (Buck Converter): If your input voltage varies or is significantly higher than 5V, a buck converter can efficiently lower the voltage to a stable 5V output. A popular example for small projects is the LM2596 module, which is an adjustable step-down (buck) converter capable of handling more significant current draws if necessary. By adjusting it, you can obtain a steady 5V output suitable for your needs.
  4. Benchtop Power Supply: If you're working on a benchtop setup and require a stable and adjustable power supply, a benchtop power supply that can provide a variable voltage output including 5V is a good option. This is more suitable for development and testing phases.
  5. Battery Pack with a Voltage Regulator: For portable applications, using a battery pack (like 4 x 1.2V AA batteries in series giving 4.8V, close to 5V) with a small boost regulator to fine-tune the output to exactly 5V can be a viable solution.
Given the listed components and the circuit description, without more specific requirements like maximum current draw, it's hard to pinpoint the best solution, but the above recommendations cover a broad range of applications. Please, let me know if there are any specific constraints or requirements for the replacement, like size, power capacity, or connectivity preferences.
1y
recommend a replacement for V2.

@copiloto necesito que sea ac
1y
Entiendo que estás buscando asistencia con tu proyecto de diseño electrónico, pero pareces haber comenzado una pregunta que no está completamente formada. ¿Podrías proporcionar más detalles sobre lo que necesitas? Por ejemplo, si estás buscando ayuda sobre cómo conectar más componentes en tu proyecto, detalles específicos sobre la configuración de un componente, o si tienes alguna pregunta sobre cómo usar Flux para diseñar tu circuito. ¡Estoy aquí para ayudarte!
1y
@copilot recommend a replacement for V2.
1y
Considering the requirements for a replacement for your V2, which is denoted as having a voltage specification of 5V, I'm assuming it is intended to be a 5V LED due to the pin names ANODE and CATHODE, which are typical for a diode, specifically LEDs in most contexts.
Given that assumption, here are a few key attributes to look for in a suitable replacement LED:
  • Forward Voltage (Vf): Should be around 5V for direct compatibility with your existing design. LEDs with a forward voltage close to 5V typically require less current-limiting resistance when driven by a 5V power supply, making them more efficient in certain circuits.
  • Luminous Intensity: Depending on your application, you might want a bright LED (high luminous intensity) or something more subdued. This is usually measured in millicandelas (mcd).
  • Package: Since the original V2 does not have a specified package, consider the physical size constraints of your project. Common packages for LEDs include 0603, 0805, and 1206 for SMD, or T-1 3/4 (5mm) for through-hole.
  • Color: Since the project title suggests a "Simple Red KITT," you would likely want a red LED.
With these attributes in mind, I recommend looking for a 5V red LED, which could be specified as something like a "5V Red LED in [your preferred package size]" or checking the datasheets or product descriptions for specific values related to forward voltage (Vf), luminous intensity, and package that suits your needs. Manufacturers like Kingbright, Lite-On, and Osram offer a wide range of LEDs that might fit these specifications.
If you're using the LED in a digital or low-power circuit where you're directly driving the LED from a GPIO pin or a simple digital circuit without much current, ensure to use a current-limiting resistor to prevent damage to both the LED and the driving circuit. Since we're discussing a replacement for V2 without detailed knowledge of its surrounding circuit, consider adding or checking the specification for an appropriate current-limiting resistor based on the forward current of your chosen LED and the supply voltage.
Example Replacement Spec:
  • Device: Red LED
  • Forward Voltage: ~5V
  • Luminous Intensity: Depending on visibility requirements
  • Package: According to space availability and handling preference (e.g., 0603, 0805, 1206 for SMD or T-1 3/4 for through-hole)
Please adjust these recommendations based on the specifics of your application, including maximum current drive capabilities and available space on the PCB.
1y
2
necesito que esta fuente sea ac de 220v con 60 Hz

@copilot necesito que esta fuente sea ac de 220v con 60 Hz
1y
Para adaptar tu proyecto a una fuente de alimentación de AC de 220V con 60Hz, necesitarás considerar varios elementos adicionales que te permitan manejar de manera segura y eficiente este tipo de voltaje y frecuencia. Dado que tu proyecto actual no incluye un método para convertir o controlar AC directamente, te recomendaré un circuito básico de rectificación y filtrado para convertir AC 220V en una fuente de DC, que parece ser lo que tus componentes utilizan (asumiendo por la presencia de un diodo y un transistor).
Sin embargo, manipular voltajes de 220V AC presenta riesgos significativos y requiere conocimientos avanzados de seguridad eléctrica. Si no estás familiarizado con estos voltajes, es muy recomendable buscar la asistencia de un profesional.
Aquí tienes una propuesta básica:
  1. Transformador: Para comenzar, necesitarás un transformador que reduzca los 220V AC a un voltaje más manejable que coincida con los requisitos de tu circuito. Por ejemplo, si tu circuito requiere 5V, busca un transformador que ofrezca en su salida el voltaje que necesitas a partir de 220V AC.
  2. Rectificador: Después del transformador, puedes usar un puente rectificador compuesto por diodos para convertir el AC en DC. Este paso convierte ambos ciclos de la señal AC en ciclos positivos.
  3. Filtrado: Usa capacitores (y posiblemente un regulador de voltaje) para filtrar la ondulación del voltaje rectificado, obteniendo así un suministro de DC más estable. Un capacitor grande (1000µF o más, calificado para el voltaje adecuado) podría ser un buen punto de partida.
  4. Regulador de Voltaje: Dependiendo del voltaje de salida del transformador y la precisión requerida de tu voltaje DC, un regulador de voltaje (como un 7805 para 5V) puede ser necesario para asegurar un suministro constante.
Así que tu esquema de conexión adicional sería algo así:
  • Conecta el secundario del transformador al puente rectificador.
  • Conecta la salida del puente rectificador a un capacitor grande para el filtrado inicial.
  • Conecta, opcionalmente, la salida filtrada a un regulador de voltaje para obtener un voltaje DC preciso y estable.
  • Conecta la salida del circuito de potencia (DC regulado) a tu circuito existente de manera que sea compatible con los requisitos de entrada de tus componentes.
Recuerda, es crucial verificar la polaridad y los niveles de voltaje en cada paso para evitar dañar los componentes. Además, asegúrate de que todos los componentes estén clasificados para manejar el voltaje y la corriente que estarán soportando.
La seguridad siempre tiene que ser tu prioridad, por lo tanto, si tienes alguna duda o no te sientes seguro manejando estos voltajes, te recomendaría contactar a un profesional.
1y
3
que sea de 100 ohmios

@copilot que sea de 100 ohmios
1y
Entiendo que estás buscando cambiar un componente en tu proyecto para que tenga una resistencia de 100 ohmios. En la descripción del proyecto proporcionada, tienes tres resistencias listadas: R1 con una resistencia de 10k ohmios, y tanto R2 como R3 con una resistencia de 500 ohmios. No especificas a cuál resistencia te gustaría cambiarle el valor, así que voy a asumir que deseas reemplazar una de las resistencias de 500 ohmios por una de 100 ohmios, ya que sería un cambio más significativo.
Si tu objetivo es reducir la resistencia en uno de los circuitos para aumentar la corriente (o por cualquier otro motivo que tengas en mente), aquí te dejo cómo sería si eligieras reemplazar R2 por una resistencia de 100 ohmios:
  • R2 (500 ohmios) cambiaría a:
    • Resistencia: 100 ohmios
    • Paquete: SMD_0603_1608Metric
El cambio a una resistencia de 100 ohmios en la posición de R2 afectará la corriente y posiblemente el comportamiento del circuito en la net denominada cb45de447480a8706302342fc51a2d2f, que conecta R2:(P1), Q1:(A2), R3:(P2). Con una resistencia más baja, esperarías ver un incremento en la corriente a través de esta rama del circuito.
Por favor, confirma si este cambio es lo que deseas, o si estabas refiriéndote a un componente diferente o necesitas ajustes adicionales.
1y
5
R1
Resistance
10k Ω
R2
Resistance
500 Ω
V1
C1
Capacitance
100p F
D1
R3
Resistance
500 Ω
Q1


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

Simple Red KITT

Simple Red KITT
Description

Created
Last updated by blacku
1 Contributor(s)
blacku

Controls

Properties

Availability & Pricing

DistributorQty 1
Digi-Key$3.45–$3.84
LCSC$1.51–$1.53
Mouser$3.43–$3.57

Assets