Chat

Welcome to Flux

Treat Flux like your intern. Tell it what you'd like to build and it'll get to work. You can also ask it questions, brainstorm ideas, and teach it your preferences. Learn More

Explain project
Write a project description
Find schematic issues
Create a test plan

Ready.


well in this project i want to drive the relay using the n channel mosfet to swi...

@copilot well in this project i want to drive the relay using the n channel mosfet to swich load between two led how can i connect the compnents
1y
To drive the relay using an N-channel MOSFET and switch the load between two LEDs, you'll need to make several connections. Here's a step-by-step approach based on your project components:
  1. Connect the MOSFET to the Relay:
    • Connect Q1Q1:DRAIN to K1K1:Coil-1.
    • Connect K1K1:Coil-2 to a positive power supply (let's assume 12V for the relay).
  2. Connect the MOSFET Source to Ground:
    • Connect Q1Q1:SOURCE to ground.
  3. Connect the MOSFET Gate to a Control Signal:
    • You can drive the gate with a microcontroller or a manual switch. For now, assume you have a control signal: connect this control signal to Q1Q1:GATE through a resistor (e.g., R1R1 with a value of 470 ohms).
  4. Connect the LEDs via the Relay:
    • Connect K1K1:Com-3 to the power rail (e.g., +5V or another suitable voltage for LEDs).
    • Connect K1K1:NO to LED1LED1:A (anode).
    • Connect LED1LED1:K (cathode) to ground.
  5. Optional - Connect a Second LED:
    • If you have a second LED, similar to LED1LED1, and want to alternate between them, you can connect it through the relay's NC (normally closed) contact:
    • Connect K1K1:NC to the anode of the second LED.
    • Connect the cathode of the second LED to ground.
Here's a simple outline of what these connections achieve:
  • When the control signal is applied to the gate of the MOSFET, it turns on, completing the circuit for the relay coil, thus energizing the relay.
  • The relay will switch from NC to NO, turning on LED1LED1.
  • When the MOSFET is off, the second LED (if connected) through the NC contact would be turned on.
1y
ok if i dont have microcontroller
1y
If you don't have a microcontroller to control the N-channel MOSFET, you can use a mechanical switch to manually control the MOSFET gate. Here’s how you can set it up:
  1. Use a Switch to Control the MOSFET Gate:
    • Connect one terminal of a switch (let's call it SW1) to a power supply (e.g., 5V or 12V, whichever is suitable for your setup).
    • Connect the other terminal of SW1 to the gate of the MOSFET ($Q1$:GATE). This will allow you to manually turn the MOSFET on and off.
  2. With the MOSFET Driven by the Switch:
    • When the switch SW1 is closed, the gate of the MOSFET will receive voltage, turning the MOSFET on, which will energize the relay coil.
    • The relay will then switch the load from the NC (normally closed) position to the NO (normally open) position, turning on $LED1$.
  3. Resistors in Circuit:
    • Include a pull-down resistor (e.g., 10k ohms) from $Q1$:GATE to ground to ensure the MOSFET is off when the switch is open. This prevents floating gate issues.
Revised Connections:
  • Switch Control:
    • Connect SW1:1 to the power supply (5V or 12V).
    • Connect SW1:2 to $Q1$:GATE.
    • Connect a pull-down resistor ($R2$) from $Q1$:GATE to ground.
  • Relay and LED Connections:
    • These remain the same as outlined previously.
This setup allows you to control the relay and switch between LEDs by simply toggling the switch, without needing a microcontroller. Let me know if you need further adjustments or have additional questions!
1y


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

Conceptual Scarlet Hoverboard

Conceptual Scarlet Hoverboard
Description

Created
Last updated by ahmed072
1 Contributor(s)
ahmed072

Controls

Properties

Availability & Pricing

DistributorQty 1
Arrow$0.01–$0.02
Digi-Key$0.06–$0.24
LCSC$0.40
Mouser$0.20
Verical$0.02

Assets