• Mono Audio Amp

    Mono Audio Amp

    20-W MONO CLASS-D AUDIO POWER AMPLIFIER with terminal block connector for a speaker #audioDevices

    vasy_skral

    222 Comments

    15 Stars


  • oscilador 555

    oscilador 555

    copilot Entiendo que deseas diseñar un oscilador utilizando el chip 555. Aquí están algunos pasos que puedes seguir para hacer esto. Conecta el pin 1 (GND) del IC 555 a la terminal negativa de tu fuente de alimentación (0V). Conecta el pin 8 (VCC) del IC 555 a la terminal positiva de tu fuente de alimentación (11V). Conecta la resistencia de 10kΩ (R1) entre el pin 8 (VCC) y el pin 7 (DISCHARGE) del 555. Conecta tu potenciómetro de 100kΩ (R2) entre el pin 7 (DISCHARGE) y el pin 6 (THRESHOLD) del 555. Junta los pines 2 (TRIGGER) y 6 (THRESHOLD) juntos y conecta los pines unidos al lado negativo de tu condensador de 10nF (C). Conecta el lado positivo del condensador de 10nF (C) a VCC (el pin 8). Conecta el pin 4 (RESET) al VCC si no quieres usar la función de reset. De lo contrario, puedes conectar una señal de reset aquí. Conecta el pin 3 (OUTPUT) del 555 al terminal positivo de tu resistencia de 470Ω. Conecta el otro terminal de la resistencia a tierra. El condensador de 10uF debe estar conectado en paralelo a la alimentación (entre VCC y GND) para suavizar cualquier ruido en la fuente de alimentación de 11V. Te sugiero que experimentes con el valor del potenciómetro (R2) hasta que consigas el Duty Cycle deseado. Por lo general, es posible cambiar la frecuencia del pulso y ajustar el Duty Cycle utilizando este control. Si, después de realizar estas conexiones y ajustes, aún no puedes obtener el Duty Cycle deseado, podría ser indicativo de que los valores de resistencia y condensador que tienes no son adecuados para tu rango de frecuencia y Duty Cycle objetivo. Para que obtengamos un Duty Cycle del 75%, necesitamos usar el chip 555 en modo astable y debemos calcular los valores de R1 y R2 (resistencia total de carga y descarga respectivamente) que nos ayude a conseguir esto. El tiempo de alta (T_high) y el tiempo de baja del ciclo (T_low) de la oscilación salen determinados por R1, R2, y C (el condensador). Se pueden usar las siguientes fórmulas para calcularlos: T_high = 0.693 * (R1 + R2) * C T_low = 0.693 * R2 * C Duty cycle = ( T_high ) / ( T_high + T_low ) Para un Duty Cycle de 0.75: Estableceremos R1 como la resistencia de 10 kilohmios que se proporcionó. Con el potenciómetro de 100 kilohmios como R2, podemos variarlo para ajustar el Duty Cycle según necesitemos hasta que se llegue a la relación deseada. Considerando que el condensador C es el condensador de 10 nF que se proporcionó, anteriores declaraciones son bajo supuesto que el tiempo de operación (T = T_high + T_low) caiga en un rango aceptable. Para el esquemático: Conecta VCC de tu 555 al terminal positivo de tu fuente de voltaje de 11V y GND a tierra. Conecta los pines 2 (TRIGGER) y 6 (THRESHOLD) juntos y al lado negativo de tu condensador de 10nF. Conecta el lado positivo del condensador a VCC. Conecta el pin 3 (OUTPUT) al terminal positivo de tu resistencia de 470 ohmios. Conecta el otro terminal de la resistencia a tierra. Conecta tu resistencia de 10 kilohmios entre VCC y los pines 2 y 6 del 555. Finalmente, conecta tu potenciómetro entre los pines 2 y 6 y el pin 7 (DISCHARGE) del 555. El condensador de 10uF debería estar conectado en paralelo a la alimentación para suavizar cualquier ruido en la alimentación de 11V. Estas son mis suposiciones y pasos sugeridos pero recuerda variar el potenciómetro hasta conseguir el Duty Cycle deseado en caso de no conseguirlo de forma inmediata. Si por alguna razón no puedes conseguir el Duty Cycle de 75%, es posible que las resistencias y condensadores proporcionados no sean los adecuados para el rango de frecuencia y Duty Cycle deseados. En tal caso, puede que tengas que utilizar otros valores de componentes.

    ninoh

    19 Comments

    11 Stars


  • Smart Button with E-Ink display

    Smart Button with E-Ink display

    Smart Button Terminal Animator: ESP32 & Raspberry Pi Zero 2 W Edition

    vasy_skral

    &

    farfarboy

    58 Comments

    4 Stars


  • sEMG_DAQ

    sEMG_DAQ

    sEMG-DAQ is a wearable 6 channel data acquisition unit for capturing surface electromyographic (sEMG) signals from human arm muscles using SJ2-3593D jack connectors while conditioning, digitizing, processing and transmitting them as sEMG data to an external AI accelerated board through an SM12B-SRSS IDC connector where AI models are run for various applications including robotic control, muscle signals medical assessment and gesture recognition. The board leverages an INA125P instrumentation amplifier together with filter stages utilizing LM324QT op-amps for conditioning and an STM32G4A1VET6 microcontroller for the digitization, processing and data transmission of the signals. Since AI models can only be as good as the data, the design of such a DAQ is necessary to ensure clean, reliable and real-time data for AI applications requiring sEMG data. The board also has USB-FS and JTAG to cater for debugging. The power (5V) is fed through a screw terminal and is regulated by two LDK320AM LDO regulators to offer 5V, 3.3V and 1.8V to meet the requirements of various components on the board.

    moshtey

    39 Comments

    4 Stars


  • L7805 Fixed output regulator

    L7805 Fixed output regulator

    Linear Voltage Regulator with 1 Positive Fixed Output 5.0V. Input voltage 35V max With JST connectors(Vin and +5V) and with block terminal connectors(Vin and +5V) #project-template #voltageregulator #project

    vasy_skral

    59 Comments

    3 Stars


  • Copilot v4 DogFooding - Audio Amplifier

    Copilot v4 DogFooding - Audio Amplifier

    I'm building an audio amplifier. These are the project requirements: - Type of Amplifier: Class D (for energy efficiency). - Input Source: Line-level input from a standard audio source, e.g., mobile phone or PC. - Output Power: 10W per channel (for a stereo setup). - Number of Channels: 2 (stereo output). - Distortion: Total Harmonic Distortion (THD) of less than 0.1% at full power. - Frequency Response: 20Hz to 20kHz. - Power Supply: Operate from a single 12V DC source. - Protection: Over-current and thermal protection for the amplifier IC. - Connectivity: Standard 3.5mm audio jack for input and screw terminals for speaker outputs. - Volume Control: A physical potentiometer for volume control. - Indicator: An LED indicator that shows power ON status. - Size Constraints: PCB size should not exceed 100mm x 100mm. Consider every requirement individually when answering any question

    nico

    2 Stars


  • Aaduino

    Aaduino

    The AAduino is an wireless Arduino clone the size of an AA battery with Keystone battery terminals rotated 180° to act as positive and negative terminals. It is meant to go inside a 3xAA battery holder creating a very small wireless node. Powered by an ATMega328p, it is fitted with an RFM69CW companion, two DS18B20 temperature sensors and an indicator LED

    adrian95

    &

    jharwinbarrozo
    jecstronic

    2 Stars


  • terminal sandbox

    terminal sandbox

    natarius

    1 Comment

    1 Star


  • Smart Vending System Control Board

    Smart Vending System Control Board

    Designing a control board for a smart vending machine. Board will house an ESP32, AC and DC power supply, terminal port for stepper motor, MG990 servo motor, SIM7200 GSM module, 2004 LCD screen.

    victorobaro

    13 Comments

    1 Star


  • Thermocouple Amplifier AD8495

    Thermocouple Amplifier AD8495

    The AD8495 K-type thermocouple amplifier from Analog Devices is so easy to use, we documented the whole thing on the back of the tiny PCB. Power the board with 3-18VDC and measure the output voltage on the OUT pin. You can easily convert the voltage to temperature with the following equation: Temperature = (Vout - 1.25) / 0.005 V. So for example, if the voltage is 1.5VDC, the temperature is (1.5 - 1.25) / 0.005 = 50°C with terminal block connections

    adrian95

    &

    jharwinbarrozo

    12 Comments

    1 Star


  • ACS712 current sensor layout example

    ACS712 current sensor layout example

    Compact ACS712 current sensor module, capable of measuring up to 20A of AC or DC current. The layout includes a 2-pin connector for the input current, a terminal for the output voltage, and two capacitors for noise reduction. #template #project #sensor #current_sensor #ACS712

    vasy_skral

    9 Comments

    1 Star


  • semgdaq

    semgdaq

    The semgdaq board is a wearable 6 channel data acquisition unit for capturing surface electromyographic (sEMG) signals from human arm muscles using SJ2-3593D jack connectors while conditioning, digitizing, processing and feature extracting them then transmitting the feature data as vectors to an external AI accelerated board through an SM12B-SRSS IDC connector using 12C and UART communication protocals where AI models are run for various applications including robotic control, muscle signals medical assessment and gesture recognition. The feature vectors are comprised of onset detection, slope sign changes, autoregression coefficients and Short Time Fourier Transform magnitude spectrum data for each segment or window of the signals in real time. This vectors can be used as the basis for further feature extraction on more computationally resourceful hardware where machine learning algorthms can be employed for descision making in the applications mentioned earlier. The board leverages INA125P instrumentation amplifiers together with filter stages utilizing LM324QT op-amps for conditioning and an STM32G4A1VET6 microcontroller for the digitization, processing, feature extraction and data transmission. Since AI models can only be as good as the data, the design of such a DAQ is necessary to ensure clean, reliable and real-time data for AI applications requiring sEMG feature data. The board also has USB-FS and JTAG to cater for debugging and external flash memory to extend its data storage and processing capability. The power (5V) is fed through a screw terminal and is regulated by two LDK320AM LDO regulators to offer 5V, 3.3V and 1.8V to meet the requirements of various components on the board.

    moshtey

    6 Comments

    1 Star


  • L7805 Fixed output regulator wring airwires for devs

    L7805 Fixed output regulator wring airwires for devs

    Linear Voltage Regulator with 1 Positive Fixed Output 5.0V. Input voltage 35V max With JST connectors(Vin and Vout) and with block terminal connectors(Vin and Vout) #project-template #voltageregulator #project

    vasy_skral

    &

    3 Comments

    1 Star


  • oscilador 555 vfiY

    oscilador 555 vfiY

    copilot Entiendo que deseas diseñar un oscilador utilizando el chip 555. Aquí están algunos pasos que puedes seguir para hacer esto. Conecta el pin 1 (GND) del IC 555 a la terminal negativa de tu fuente de alimentación (0V). Conecta el pin 8 (VCC) del IC 555 a la terminal positiva de tu fuente de alimentación (11V). Conecta la resistencia de 10kΩ (R1) entre el pin 8 (VCC) y el pin 7 (DISCHARGE) del 555. Conecta tu potenciómetro de 100kΩ (R2) entre el pin 7 (DISCHARGE) y el pin 6 (THRESHOLD) del 555. Junta los pines 2 (TRIGGER) y 6 (THRESHOLD) juntos y conecta los pines unidos al lado negativo de tu condensador de 10nF (C). Conecta el lado positivo del condensador de 10nF (C) a VCC (el pin 8). Conecta el pin 4 (RESET) al VCC si no quieres usar la función de reset. De lo contrario, puedes conectar una señal de reset aquí. Conecta el pin 3 (OUTPUT) del 555 al terminal positivo de tu resistencia de 470Ω. Conecta el otro terminal de la resistencia a tierra. El condensador de 10uF debe estar conectado en paralelo a la alimentación (entre VCC y GND) para suavizar cualquier ruido en la fuente de alimentación de 11V. Te sugiero que experimentes con el valor del potenciómetro (R2) hasta que consigas el Duty Cycle deseado. Por lo general, es posible cambiar la frecuencia del pulso y ajustar el Duty Cycle utilizando este control. Si, después de realizar estas conexiones y ajustes, aún no puedes obtener el Duty Cycle deseado, podría ser indicativo de que los valores de resistencia y condensador que tienes no son adecuados para tu rango de frecuencia y Duty Cycle objetivo. Para que obtengamos un Duty Cycle del 75%, necesitamos usar el chip 555 en modo astable y debemos calcular los valores de R1 y R2 (resistencia total de carga y descarga respectivamente) que nos ayude a conseguir esto. El tiempo de alta (T_high) y el tiempo de baja del ciclo (T_low) de la oscilación salen determinados por R1, R2, y C (el condensador). Se pueden usar las siguientes fórmulas para calcularlos: T_high = 0.693 * (R1 + R2) * C T_low = 0.693 * R2 * C Duty cycle = ( T_high ) / ( T_high + T_low ) Para un Duty Cycle de 0.75: Estableceremos R1 como la resistencia de 10 kilohmios que se proporcionó. Con el potenciómetro de 100 kilohmios como R2, podemos variarlo para ajustar el Duty Cycle según necesitemos hasta que se llegue a la relación deseada. Considerando que el condensador C es el condensador de 10 nF que se proporcionó, anteriores declaraciones son bajo supuesto que el tiempo de operación (T = T_high + T_low) caiga en un rango aceptable. Para el esquemático: Conecta VCC de tu 555 al terminal positivo de tu fuente de voltaje de 11V y GND a tierra. Conecta los pines 2 (TRIGGER) y 6 (THRESHOLD) juntos y al lado negativo de tu condensador de 10nF. Conecta el lado positivo del condensador a VCC. Conecta el pin 3 (OUTPUT) al terminal positivo de tu resistencia de 470 ohmios. Conecta el otro terminal de la resistencia a tierra. Conecta tu resistencia de 10 kilohmios entre VCC y los pines 2 y 6 del 555. Finalmente, conecta tu potenciómetro entre los pines 2 y 6 y el pin 7 (DISCHARGE) del 555. El condensador de 10uF debería estar conectado en paralelo a la alimentación para suavizar cualquier ruido en la alimentación de 11V. Estas son mis suposiciones y pasos sugeridos pero recuerda variar el potenciómetro hasta conseguir el Duty Cycle deseado en caso de no conseguirlo de forma inmediata. Si por alguna razón no puedes conseguir el Duty Cycle de 75%, es posible que las resistencias y condensadores proporcionados no sean los adecuados para el rango de frecuencia y Duty Cycle deseados. En tal caso, puede que tengas que utilizar otros valores de componentes.

    1 Comment

    1 Star


  • RT6150B-33-Reference-Design

    RT6150B-33-Reference-Design

    Typical Application Circuit for RT6150B-33GQW, 1 Positive Fixed Output 3.3V 800mA. Input voltage 6V max. With JST connectors(Vin and +3V3) and with block terminal connectors(Vin and +3V3) #project-template #voltageregulator #switchingregulator #BuckBoost #project

    vasy_skral

    &

    jharwinbarrozo

    1 Comment

    1 Star


  • Adafruit HUSB238 USB Type C Power

    Adafruit HUSB238 USB Type C Power

    Vertical USB & I2C Interface Module – Organized Power/Data Terminal Block

    1 Star


  • Bus Servo Driver Board for Seeed Studio XIAO

    Bus Servo Driver Board for Seeed Studio XIAO

    The Bus Servo Driver Board supports ST/SC series servos with UART and USB dual modes. It features a 2P 3.5mm screw terminal and is compatible with the Seeed Studio XIAO ecosystem. Ideal for robotic arms and multi-legged robots, it ensures rapid prototyping and precise control.

    &

    1 Star


  • LW18-S

    LW18-S

    I2C to dual PWM controller. The LED-Warrior18, manufactured by Code Mercenaries, is an I2C to dual channel PWM LED driver specifically designed to provide seamless brightness control for LED applications. This component, available in SOIC8 package (LW18-S) and as a ready-to-use module (LW18-01MOD), offers dual 16-bit PWM outputs with a dimming range from 0.001% to 100% and operates at a PWM frequency of 730 Hz. It supports programmable period lengths for higher-frequency or lower-resolution operation and includes an 8-bit data to logarithmic mapping feature for smoother dimming operations with just 256 steps. The LED-Warrior18 is engineered for minimal external circuitry with a 5V power supply requirement, offering ease of use in various lighting applications. It also features a sync mode for synchronized control of multiple units and customizable power-on status settings, making it highly versatile for standalone operations or integrated systems. Additionally, custom variants of both the chip and module are available, catering to specific application needs. The module version, LW18-01MOD, simplifies integration by including terminal blocks and supporting up to 4A load sink current for each output. The LED-Warrior18 stands out for its straightforward interface and operational flexibility, providing a comprehensive solution for advanced LED dimming and control projects.

    1 Star


  • element v.s. node - terminal

    element v.s. node - terminal

    Welcome to your new project. Imagine what you can build here.

    1 Comment


  • exclude from pcb terminal issue

    exclude from pcb terminal issue

    Welcome to your new project. Imagine what you can build here.

    jharwinbarrozo

    1 Comment


  • XLR  FeMale to Terminal

    XLR FeMale to Terminal

    Welcome to your new project. Imagine what you can build here.


  • XLR Male to Terminal

    XLR Male to Terminal

    Welcome to your new project. Imagine what you can build here.


  • Two terminal, one ground

    Two terminal, one ground

    Welcome to your new project. Imagine what you can build here.


  • idc20 to terminal

    idc20 to terminal

    Welcome to your new project. Imagine what you can build here.


  • Terminal Wiring Issue

    Terminal Wiring Issue

    Welcome to your new project. Imagine what you can build here.

    &


  • TPS5420D reference design mZUY

    TPS5420D reference design mZUY

    This TPS5420D reference design is a step-down voltage regulator providing a stable 5V output from a higher input voltage. It uses capacitors, an inductor, and a diode for filtering and protection, with an EN terminal for control. Ideal for applications needing a regulated 5V supply. #referenceDesign #project #stepDown #voltageRegulator #5V #TPS5420 #powermanagement #texas-instruments #template #reference-design

    21 Comments


  • TP4056 Type-C charger

    TP4056 Type-C charger

    Tiny USB type-C charger for Li-ion single cell charger based on TP4056 IC. Rprog setting output current to 900mA. VIN and BAT connector are block terminal connectors. #project #typec #charger #TP4056

    12 Comments


  • Mono Audio Amp

    Mono Audio Amp

    20-W MONO CLASS-D AUDIO POWER AMPLIFIER with terminal block connector for a speaker #audioDevices

    11 Comments


  • TP4056 Reference Design

    TP4056 Reference Design

    Reference design for Li-ion single cell charger based on TP4056 IC. Rprog setting output current to 900mA. VIN and BAT connector are block terminal connectors. #project #Template #referenceDesign #charger #TP4056 #referenceDesign #batterycharger #template #bms #reference-design #polygon

    vasy_skral

    9 Comments


  • foooo

    foooo

    20-W MONO CLASS-D AUDIO POWER AMPLIFIER with terminal block connector for a speaker

    9 Comments


  • RT6150B-33-Reference-Design

    RT6150B-33-Reference-Design

    Typical Application Circuit for RT6150B-33GQW, 1 Positive Fixed Output 3.3V 800mA. Input voltage 6V max. With JST connectors(Vin and +3V3) and with block terminal connectors(Vin and +3V3) #project-template #voltageregulator #switchingregulator #BuckBoost #project

    8 Comments


  • sEMG_DAQ

    sEMG_DAQ

    sEMG-DAQ is a wearable 6 channel data acquisition unit for capturing surface electromyographic (sEMG) signals from human arm muscles using SJ2-3593D jack connectors while conditioning, digitizing, processing and transmitting them as sEMG data to an external AI accelerated board through an SM12B-SRSS IDC connector where AI models are run for various applications including robotic control, muscle signals medical assessment and gesture recognition. The board leverages an INA125P instrumentation amplifier together with filter stages utilizing LM324QT op-amps for conditioning and an STM32G4A1VET6 microcontroller for the digitization, processing and data transmission of the signals. Since AI models can only be as good as the data, the design of such a DAQ is necessary to ensure clean, reliable and real-time data for AI applications requiring sEMG data. The board also has USB-FS and JTAG to cater for debugging. The power (5V) is fed through a screw terminal and is regulated by two LDK320AM LDO regulators to offer 5V, 3.3V and 1.8V to meet the requirements of various components on the board.

    5 Comments


  • UJA1166ATK Reference Design

    UJA1166ATK Reference Design

    This project is a reference design for a UJA1166ATK-based circuit, implementing CAN protocol interface with Wake-up, Inhibit, and Sleep functionality. CANBus have block terminal connector and surface mount test points. #referenceDesign #project #CANbus #interface #transceiverCircuit #UJA1166ATK #UJA1166ATK/0Z #referenceDesign #canbus #nxp #template #reference-design

    vasy_skral

    5 Comments


  • TP4056 Type-C charger

    TP4056 Type-C charger

    Tiny USB type-C charger for Li-ion single cell charger based on TP4056 IC. Rprog setting output current to 900mA. VIN and BAT connector are block terminal connectors. #project #typec #charger #TP4056

    vasy_skral

    4 Comments


  • ACS712 current sensor layout example

    ACS712 current sensor layout example

    Compact ACS712 current sensor module, capable of measuring up to 20A of AC or DC current. The layout includes a 2-pin connector for the input current, a terminal for the output voltage, and two capacitors for noise reduction. #template #project #sensor #current_sensor #ACS712

    3 Comments


  • L7805 Fixed output regulator poER

    L7805 Fixed output regulator poER

    Linear Voltage Regulator with 1 Positive Fixed Output 5.0V. Input voltage 35V max With JST connectors(Vin and +5V) and with block terminal connectors(Vin and +5V) #project-template #voltageregulator #project

    3 Comments


  • DB125-3.81-4P-GN-S

    DB125-3.81-4P-GN-S

    Straight 4 pin Pitch 3.81mm Screw terminal block #screwblock #connector #commonPartsLibrary

    1 Comment


  • oscilador 555

    oscilador 555

    copilot Entiendo que deseas diseñar un oscilador utilizando el chip 555. Aquí están algunos pasos que puedes seguir para hacer esto. Conecta el pin 1 (GND) del IC 555 a la terminal negativa de tu fuente de alimentación (0V). Conecta el pin 8 (VCC) del IC 555 a la terminal positiva de tu fuente de alimentación (11V). Conecta la resistencia de 10kΩ (R1) entre el pin 8 (VCC) y el pin 7 (DISCHARGE) del 555. Conecta tu potenciómetro de 100kΩ (R2) entre el pin 7 (DISCHARGE) y el pin 6 (THRESHOLD) del 555. Junta los pines 2 (TRIGGER) y 6 (THRESHOLD) juntos y conecta los pines unidos al lado negativo de tu condensador de 10nF (C). Conecta el lado positivo del condensador de 10nF (C) a VCC (el pin 8). Conecta el pin 4 (RESET) al VCC si no quieres usar la función de reset. De lo contrario, puedes conectar una señal de reset aquí. Conecta el pin 3 (OUTPUT) del 555 al terminal positivo de tu resistencia de 470Ω. Conecta el otro terminal de la resistencia a tierra. El condensador de 10uF debe estar conectado en paralelo a la alimentación (entre VCC y GND) para suavizar cualquier ruido en la fuente de alimentación de 11V. Te sugiero que experimentes con el valor del potenciómetro (R2) hasta que consigas el Duty Cycle deseado. Por lo general, es posible cambiar la frecuencia del pulso y ajustar el Duty Cycle utilizando este control. Si, después de realizar estas conexiones y ajustes, aún no puedes obtener el Duty Cycle deseado, podría ser indicativo de que los valores de resistencia y condensador que tienes no son adecuados para tu rango de frecuencia y Duty Cycle objetivo. Para que obtengamos un Duty Cycle del 75%, necesitamos usar el chip 555 en modo astable y debemos calcular los valores de R1 y R2 (resistencia total de carga y descarga respectivamente) que nos ayude a conseguir esto. El tiempo de alta (T_high) y el tiempo de baja del ciclo (T_low) de la oscilación salen determinados por R1, R2, y C (el condensador). Se pueden usar las siguientes fórmulas para calcularlos: T_high = 0.693 * (R1 + R2) * C T_low = 0.693 * R2 * C Duty cycle = ( T_high ) / ( T_high + T_low ) Para un Duty Cycle de 0.75: Estableceremos R1 como la resistencia de 10 kilohmios que se proporcionó. Con el potenciómetro de 100 kilohmios como R2, podemos variarlo para ajustar el Duty Cycle según necesitemos hasta que se llegue a la relación deseada. Considerando que el condensador C es el condensador de 10 nF que se proporcionó, anteriores declaraciones son bajo supuesto que el tiempo de operación (T = T_high + T_low) caiga en un rango aceptable. Para el esquemático: Conecta VCC de tu 555 al terminal positivo de tu fuente de voltaje de 11V y GND a tierra. Conecta los pines 2 (TRIGGER) y 6 (THRESHOLD) juntos y al lado negativo de tu condensador de 10nF. Conecta el lado positivo del condensador a VCC. Conecta el pin 3 (OUTPUT) al terminal positivo de tu resistencia de 470 ohmios. Conecta el otro terminal de la resistencia a tierra. Conecta tu resistencia de 10 kilohmios entre VCC y los pines 2 y 6 del 555. Finalmente, conecta tu potenciómetro entre los pines 2 y 6 y el pin 7 (DISCHARGE) del 555. El condensador de 10uF debería estar conectado en paralelo a la alimentación para suavizar cualquier ruido en la alimentación de 11V. Estas son mis suposiciones y pasos sugeridos pero recuerda variar el potenciómetro hasta conseguir el Duty Cycle deseado en caso de no conseguirlo de forma inmediata. Si por alguna razón no puedes conseguir el Duty Cycle de 75%, es posible que las resistencias y condensadores proporcionados no sean los adecuados para el rango de frecuencia y Duty Cycle deseados. En tal caso, puede que tengas que utilizar otros valores de componentes.

    1 Comment


  • BQ25504 LiFePO4 template

    BQ25504 LiFePO4 template

    Ultra Low-Power Energy Harvester based on BQ25504 tuned for LiFePO4 battery (VBAT_OV = 3.6V) with terminal block connectors #template #solar

    vasy_skral

    1 Comment


  • MAX1873TEEE Project

    MAX1873TEEE Project

    4 cells Multi-Chemistry Charger a battery voltage is adjusted to 4.2V (R7 and R8) with terminal block connections #project #batterycharger

    vasy_skral

    1 Comment


  • MAX1873TEEE Template

    MAX1873TEEE Template

    4 cells Multi-Chemistry Charger a battery voltage is adjusted to 4.2V (R7 and R8) with terminal block connections #template #project #batterycharger

    vasy_skral

    1 Comment


  • Thermocouple Amplifier AD8495  5ba4

    Thermocouple Amplifier AD8495 5ba4

    The AD8495 K-type thermocouple amplifier from Analog Devices is so easy to use, we documented the whole thing on the back of the tiny PCB. Power the board with 3-18VDC and measure the output voltage on the OUT pin. You can easily convert the voltage to temperature with the following equation: Temperature = (Vout - 1.25) / 0.005 V. So for example, if the voltage is 1.5VDC, the temperature is (1.5 - 1.25) / 0.005 = 50°C with terminal block connections

    1 Comment


  • MCP2544WFD Reference Design

    MCP2544WFD Reference Design

    This MCP2544WFD -based reference design is a CAN bus transceiver circuit, providing reliable data communication over the CAN network. The design features a range of capacitors and resistors to ensure signal integrity, and a NUP2105L for voltage protection. It's ideal for applications requiring reliable data communication in an automotive or industrial environment. CANBus have block terminal connector and surface mount test points. #referenceDesign #project #CANbus #interface #transceiverCircuit #MCP2544WFD #MCP2544WFDT-H/MNY #template #canbus #microchip #reference-design

    vasy_skral

    1 Comment


  • AOZ2261AQI-15 Project

    AOZ2261AQI-15 Project

    DC/DC synchronous buck regulator based on AOZ2261AQI-15 IC. Output voltage is 12V (R3 and R4) with terminal block connections #project #regulator #voltageregulator

    vasy_skral

    1 Comment


  • 282836-3

    282836-3

    3 Position Wire to Board Terminal Block Horizontal with Board 0.197" (5.00mm) Through Hole #screwblock #connector #commonPartsLibrary

    1 Comment


  • L7805 Fixed output regulator vZnb

    L7805 Fixed output regulator vZnb

    Linear Voltage Regulator with 1 Positive Fixed Output 5.0V. Input voltage 35V max With JST connectors(Vin and +5V) and with block terminal connectors(Vin and +5V) #project-template #voltageregulator #project

    1 Comment


  • AOZ2261AQI-15 Template

    AOZ2261AQI-15 Template

    DC/DC synchronous buck regulator based on AOZ2261AQI-15 IC. Output voltage is 12V (R3 and R4) with terminal block connections #template #project-template #regulator #voltageregulator

    vasy_skral

    1 Comment


  • TPS62175 Project

    TPS62175 Project

    Buck, Buck-Boost Switching Regulator Input Voltage Range 4.75V to 28V with 100% Duty Cycle Mode. Output 5V With JST connectors(Vin and Vout) and with block terminal connectors(Vin and Vout) #project-template #voltageregulator #project

    vasy_skral

    1 Comment


  • L7805 Fixed output regulator

    L7805 Fixed output regulator

    Linear Voltage Regulator with 1 Positive Fixed Output 5.0V. Input voltage 35V max With JST connectors(Vin and +5V) and with block terminal connectors(Vin and +5V) #project-template #voltageregulator #project

    1 Comment


  • sEMG_DAQ

    sEMG_DAQ

    sEMG-DAQ is a wearable 6 channel data acquisition unit for capturing surface electromyographic (sEMG) signals from human arm muscles using SJ2-3593D jack connectors while conditioning, digitizing, processing and transmitting them as sEMG data to an external AI accelerated board through an SM12B-SRSS IDC connector where AI models are run for various applications including robotic control, muscle signals medical assessment and gesture recognition. The board leverages an INA125P instrumentation amplifier together with filter stages utilizing LM324QT op-amps for conditioning and an STM32G4A1VET6 microcontroller for the digitization, processing and data transmission of the signals. Since AI models can only be as good as the data, the design of such a DAQ is necessary to ensure clean, reliable and real-time data for AI applications requiring sEMG data. The board also has USB-FS and JTAG to cater for debugging. The power (5V) is fed through a screw terminal and is regulated by two LDK320AM LDO regulators to offer 5V, 3.3V and 1.8V to meet the requirements of various components on the board.

    &

    1 Comment