basic transistor power switching circuit
Welcome to your new project. Imagine what you can build here.basic transistor power switching circuit
Welcome to your new project. Imagine what you can build here.Power Inverter cNDq
The inverter specs are Switching frequency: 200kHz Input voltage: 180VDC Output voltage: 120VAC Max power: 1500W I have designed an Inverter schematic for an uninterruptible power supply (UPS), Used an efficiency LCL topology filter to eliminate 3rd and 5th harmonics as induction motor is connected at load. The Inverter schematic that can convert 180VDC into 120VAC, which can be used in any household or industrial application. You can refer the BOM to check the MOSFET parts, drivers, and filter parameter values.... show more1 Comment
Power Inverter vLxW
The inverter specs are Switching frequency: 200kHz Input voltage: 180VDC Output voltage: 120VAC Max power: 1500W I have designed an Inverter schematic for an uninterruptible power supply (UPS), Used an efficiency LCL topology filter to eliminate 3rd and 5th harmonics as induction motor is connected at load. The Inverter schematic that can convert 180VDC into 120VAC, which can be used in any household or industrial application. You can refer the BOM to check the MOSFET parts, drivers, and filter parameter values.... show more1 Comment
WiFi Gesture Light Switch Reference Design 7sqg
This project is a WiFi Gesture Light Switch controlled by an ESP32 microcontroller. It leverages APDS-9960 and CH340C ICs for gesture recognition and USB communication respectively. Essential components include diodes for voltage protection, LEDs for status indication, and an AMS1117 voltage regulator to ensure a stable power supply. Connectors like USB Type-C are used for power and data transfers. #referenceDesign #project #ESP32 #ESP32WROOM #RF #WIFI #MCU #thermostat #referenceDesign #edge-computing #edgeComputing #espressif #template #reference-design... show moreWiFi Gesture Light Switch Reference Design
This project is a WiFi Gesture Light Switch controlled by an ESP32 microcontroller. It leverages APDS-9960 and CH340C ICs for gesture recognition and USB communication respectively. Essential components include diodes for voltage protection, LEDs for status indication, and an AMS1117 voltage regulator to ensure a stable power supply. Connectors like USB Type-C are used for power and data transfers. #referenceDesign #project #ESP32 #ESP32WROOM #RF #WIFI #MCU #thermostat #referenceDesign #edge-computing #edgeComputing #espressif #template #reference-design... show more100V Line Short-Circuit Detector with 1kHz Signal Injection
This project involves designing a portable device that can inject a 1kHz sine wave signal into a 100V audio line to detect short circuits. The device should be compact (around the size of a smartphone) and include LED indicators to show the status: a green LED for normal operation and a red LED for short-circuit detection. The device will be powered either by a switching power supply or rechargeable batteries.... show more23 Comments
LT1933 Reference Design c3PK
This is a reference design of buck based on LT1933 with an internal 0.75A power switch and 3.3V output #3V3 #dcdc #power #referenceDesign #powermanagement #analogdevices #template... show more17 Comments
APM2300CA sib4
The APM2300CA, manufactured by Sinopower Semiconductor, is a high-performance N-Channel Enhancement Mode MOSFET designed for power management in notebook computers, portable equipment, and battery-powered systems. This component delivers a maximum drain-source voltage (VDSS) of 20V and can handle continuous drain current up to 6A when VGS is 10V, ensuring robust performance for demanding applications. Its low RDS(ON) values of 25mΩ (typ.) at VGS=10V, 32mΩ (typ.) at VGS=4.5V, 40mΩ (typ.) at VGS=2.5V, and 65mΩ (typ.) at VGS=1.8V minimize power loss and heat generation. The APM2300CA is reliable and rugged, complying with RoHS standards and available in a lead-free, halogen-free SOT-23 package, featuring a maximum power dissipation of 0.83W at 25℃. It is optimized for fast switching, with total gate charge (Qg) of 6nC (typ.) at VGS=4.5V and a gate resistance (RG) of 6Ω, supporting efficient and precise control in diverse power applications.... show more10 Comments
ADP1613 Reference Design 2Ea9
This is a reference design of step-up dc-to-dc switching converter based ADP1613 with a 15V output #dcdc #power #boost #15V #referenceDesign #powermanagement #analogdevices #template #reference-design... show more9 Comments
Bulb TR100N1 30W V09.1
Buck Converter Input Voltage: 220VAC Input Power: 30W AC Frequency : 50/60Hz Power Factor: 0.5 LED Output Voltage: 160V LED Output Current: 170mA Driver Efficiency : 93% Switching Frequency : 200kHz Output Current after diode bridge rectifier : 100mA Output Voltage after diode bridge rectifier : 310VDC... show more6 Comments
Coffee Waker Main HQ W/ Module V3.1 82a2
The Coffee Waker is a unique, full-featured coffee maker alarm clock designed to brighten your morning routine with the irresistible aroma of freshly brewed coffee. By seamlessly integrating multiple high-performance components onto a single main board, the Coffee Waker delivers both functionality and innovation: - **Processing & Connectivity:** Powered by an ESP32-S3, it offers built-in WiFi and Bluetooth, enabling smart scheduling, remote control, and over-the-air updates. - **Precision Sensing:** A 16-bit load cell ADC provides accurate measurements, ensuring precise weight sensing for coffee bean dosing or liquid volume monitoring. - **Quality Audio Output:** The onboard 16-bit MP3 DAC guarantees clear audio playback, from alarm sounds to any custom wake-up messages you program. - **Robust Power Handling:** With a 120V heater cartridge relay and a 12V wakeup light converter integrated, the board safely manages high voltage switching and provides a visually soothing light routine. - **Thoughtful Integration:** Designed with automotive-grade components, precision regulators, and careful signal routing, the Coffee Waker Main Board combines performance with reliability while keeping a compact footprint. Overall, the Coffee Waker transcends the ordinary alarm clock, merging daily utility with modern connectivity and a touch of luxury—making it the perfect addition to any nightstand. #CoffeeWaker #SmartHome #CoffeeMaker #AlarmClock #MorningRoutine #Technology #Innovation... show more3 Comments
WiFi RF-ID lock reference design g7u8 eb3f
This project is a WiFi RF-ID Lock, which uses a Espressif ESP-8684 microcontroller for WiFi connectivity and a Handson Technology RC522 for RF-ID functionality. It also includes an OLED display and user control via a switch. A step-up power converter ensures consistent 3.3V power. #WiFi #MCU #ReferenceDesign #project #ESP8684 #lock #OLED #referenceDesign #simple-embedded #espressif #template #reference-design... show more3 Comments
Regulador de voltaje de 50
This project is a WiFi Gesture Light Switch controlled by an ESP32 microcontroller. It leverages APDS-9960 and CH340C ICs for gesture recognition and USB communication respectively. Essential components include diodes for voltage protection, LEDs for status indication, and an AMS1117 voltage regulator to ensure a stable power supply. Connectors like USB Type-C are used for power and data transfers. #referenceDesign #project #ESP32 #ESP32WROOM #RF #WIFI #MCU #thermostat #referenceDesign #edge-computing #edgeComputing #espressif #template #reference-design... show more3 Comments
WiFi RF-ID lock reference design vnb3 2qkR
This project is a WiFi RF-ID Lock, which uses a Espressif ESP-8684 microcontroller for WiFi connectivity and a Handson Technology RC522 for RF-ID functionality. It also includes an OLED display and user control via a switch. A step-up power converter ensures consistent 3.3V power. #WiFi #MCU #ReferenceDesign #project #ESP8684 #lock #OLED #referenceDesign #simple-embedded #espressif #template #reference-design... show more1 Comment
WiFi RF-ID lock reference design vnb3
This project is a WiFi RF-ID Lock, which uses a Espressif ESP-8684 microcontroller for WiFi connectivity and a Handson Technology RC522 for RF-ID functionality. It also includes an OLED display and user control via a switch. A step-up power converter ensures consistent 3.3V power. #WiFi #MCU #ReferenceDesign #project #ESP8684 #lock #OLED #referenceDesign #simple-embedded #espressif #template #reference-design... show more1 Comment
Regulador de voltaje de 50 eVo1 pTn9
This project is a WiFi Gesture Light Switch controlled by an ESP32 microcontroller. It leverages APDS-9960 and CH340C ICs for gesture recognition and USB communication respectively. Essential components include diodes for voltage protection, LEDs for status indication, and an AMS1117 voltage regulator to ensure a stable power supply. Connectors like USB Type-C are used for power and data transfers. #referenceDesign #project #ESP32 #ESP32WROOM #RF #WIFI #MCU #thermostat #referenceDesign #edge-computing #edgeComputing #espressif #template #reference-design... show more1 Comment
WiFi RF-ID lock reference design vnb3 gZMF
This project is a WiFi RF-ID Lock, which uses a Espressif ESP-8684 microcontroller for WiFi connectivity and a Handson Technology RC522 for RF-ID functionality. It also includes an OLED display and user control via a switch. A step-up power converter ensures consistent 3.3V power. #WiFi #MCU #ReferenceDesign #project #ESP8684 #lock #OLED #referenceDesign #simple-embedded #espressif #template #reference-design... show more1 Comment
WiFi RF-ID kilit
This project is a WiFi RF-ID Lock, which uses a Espressif ESP-8684 microcontroller for WiFi connectivity and a Handson Technology RC522 for RF-ID functionality. It also includes an OLED display and user control via a switch. A step-up power converter ensures consistent 3.3V power. #WiFi #MCU #ReferenceDesign #project #ESP8684 #lock #OLED #referenceDesign #simple-embedded #espressif #template #reference-design... show more1 Comment
Push on or hold off
A power switch using a push button. It turns on with a single press and only turns off when you hold the button down.1 Comment
Push on or hold off
A power switch using a push button. It turns on with a single press and only turns off when you hold the button down.1 Comment
AO3422
The Alpha & Omega Semiconductor AO3422 is a high-performance, N-channel enhancement mode field effect transistor (FET) designed using advanced trench technology. This technology ensures the component offers low RDS(ON) and minimal gate charge, making it highly efficient for use in various electronic applications. Key features of the AO3422 include a 55V drain-source voltage (VDS), a continuous drain current (ID) of 2.1A at a gate-source voltage (VGS) of 4.5V, and RDS(ON) values as low as 160mΩ at VGS = 4.5V. It supports a wide gate drive range from 2.5V to 12V, making it versatile for different operating conditions. Specifically designed for load switch applications, the AO3422 comes in a compact SOT23 package, offering a blend of performance, efficiency, and space-saving design. Its absolute maximum ratings include a drain-source voltage of up to 55V, gate-source voltage of up to +12V, and a power dissipation of 1.25W at 25°C. With thermal characteristics designed for robust operation, including a maximum junction-to-ambient thermal resistance of 75°C/W for short durations, the AO3422 is optimized for high-performance switch operations in a range of electronic circuits.... show more1 Comment
WiFi RF-ID lock reference design awsb
This project is a WiFi RF-ID Lock, which uses a Espressif ESP-8684 microcontroller for WiFi connectivity and a Handson Technology RC522 for RF-ID functionality. It also includes an OLED display and user control via a switch. A step-up power converter ensures consistent 3.3V power. #WiFi #MCU #ReferenceDesign #project #ESP8684 #lock #OLED #referenceDesign #simple-embedded #espressif #template #reference-design... show more1 Comment
WiFi RF-ID lock reference design
This project is a WiFi RF-ID Lock, which uses a Espressif ESP-8684 microcontroller for WiFi connectivity and a Handson Technology RC522 for RF-ID functionality. It also includes an OLED display and user control via a switch. A step-up power converter ensures consistent 3.3V power. #WiFi #MCU #ReferenceDesign #project #ESP8684 #lock #OLED #referenceDesign #simple-embedded #espressif #template #reference-design... show more1 Comment
MMBFJ177
The J175, J176, MMBFJ175, MMBFJ176, and MMBFJ177 are a series of P-Channel switches designed and manufactured by onsemi™, suitable for low-level analog switching, sample-and-hold circuits, and chopper-stabilized amplifiers. These components are sourced from process 88, indicating a specific manufacturing technique employed by onsemi™ to ensure consistent performance and reliability. The devices are offered in both TO-92 and SOT-23 packages, catering to a variety of mounting preferences and application requirements. They are characterized by their ability to handle a drain-gate voltage of -30V, a gate-source voltage of 30V, and a forward gate current of 50 mA. Operating and storage junction temperature ranges are specified from -55 to +150°C, ensuring robustness across a wide range of environmental conditions. With features like low on-resistance and high transconductance, these components are optimized for efficient signal modulation and minimal power loss, making them highly suitable for precision applications in analog signal processing.... show more1 Comment
Push on or hold off
A power switch using a push button. It turns on with a single press and only turns off when you hold the button down.1 Comment
Regulador de voltaje de 50 woZx
This project is a WiFi Gesture Light Switch controlled by an ESP32 microcontroller. It leverages APDS-9960 and CH340C ICs for gesture recognition and USB communication respectively. Essential components include diodes for voltage protection, LEDs for status indication, and an AMS1117 voltage regulator to ensure a stable power supply. Connectors like USB Type-C are used for power and data transfers. #referenceDesign #project #ESP32 #ESP32WROOM #RF #WIFI #MCU #thermostat #referenceDesign #edge-computing #edgeComputing #espressif #template #reference-design... show more1 Comment
Regulador de voltaje de 50 6czn
This project is a WiFi Gesture Light Switch controlled by an ESP32 microcontroller. It leverages APDS-9960 and CH340C ICs for gesture recognition and USB communication respectively. Essential components include diodes for voltage protection, LEDs for status indication, and an AMS1117 voltage regulator to ensure a stable power supply. Connectors like USB Type-C are used for power and data transfers. #referenceDesign #project #ESP32 #ESP32WROOM #RF #WIFI #MCU #thermostat #referenceDesign #edge-computing #edgeComputing #espressif #template #reference-design... show more1 Comment
Regulador de voltaje de 50 eVo1
This project is a WiFi Gesture Light Switch controlled by an ESP32 microcontroller. It leverages APDS-9960 and CH340C ICs for gesture recognition and USB communication respectively. Essential components include diodes for voltage protection, LEDs for status indication, and an AMS1117 voltage regulator to ensure a stable power supply. Connectors like USB Type-C are used for power and data transfers. #referenceDesign #project #ESP32 #ESP32WROOM #RF #WIFI #MCU #thermostat #referenceDesign #edge-computing #edgeComputing #espressif #template #reference-design... show more1 Comment
Regulador de voltaje de 50 exG4
This project is a WiFi Gesture Light Switch controlled by an ESP32 microcontroller. It leverages APDS-9960 and CH340C ICs for gesture recognition and USB communication respectively. Essential components include diodes for voltage protection, LEDs for status indication, and an AMS1117 voltage regulator to ensure a stable power supply. Connectors like USB Type-C are used for power and data transfers. #referenceDesign #project #ESP32 #ESP32WROOM #RF #WIFI #MCU #thermostat #referenceDesign #edge-computing #edgeComputing #espressif #template #reference-design... show more1 Comment
WiFi RF-ID lock reference design g7u8
This project is a WiFi RF-ID Lock, which uses a Espressif ESP-8684 microcontroller for WiFi connectivity and a Handson Technology RC522 for RF-ID functionality. It also includes an OLED display and user control via a switch. A step-up power converter ensures consistent 3.3V power. #WiFi #MCU #ReferenceDesign #project #ESP8684 #lock #OLED #referenceDesign #simple-embedded #espressif #template #reference-design... show more1 Comment
Unique Purple TV Glasses
Smart Wellhead Controller V1.1: ESP32 + LoRa Industrial IoT Node with Solar Power, Deep-Sleep Leak Sensing, and OLED HMI. Now upgraded with a solar charging and battery management stage featuring a TP4056/CN3791 charger IC, power-path switching, Li-ion battery protection, and integrated 3.3 V rail supply. #PowerBlock #SolarCharging #BMS... show moreActive Three-Way Crossover on NE5532
TECHNICAL ASSIGNMENT AND DESIGN GUIDE Active Three-Way Crossover on NE5532 Powered by AM4T-4815DZ and Amplifiers TPA3255 (Updated Version) 1. GENERAL PURPOSE OF THE DEVICE The goal of the development is to create an active three-way audio crossover for one channel of a loudspeaker system, working with the following drivers: LF: VISATON W250 MF: VISATON MR130 HF: Morel MDT-12 Each frequency range is amplified by a separate power amplifier: LF: TPA3255 in PBTL mode (mono) MF + HF: second TPA3255 in stereo mode (one channel for MF, the other for HF) The crossover accepts a single linear audio signal (mono) and divides it into three frequency bands: Range Frequency Range LF 0 – 650 Hz MF 650 – 2500 Hz HF 2500 Hz and above Filter type: Linkwitz–Riley 4th order (24 dB/oct) at each crossover point (650 Hz and 2500 Hz). The crossover must provide: minimal self-noise; no audible distortion in the audible range; stable operation with NE5532 at ±15 V power supply; easy adjustment of the level for each band, as well as the overall level (via the input buffer). 2. FILTER TYPES AND BASIC OPERATING PRINCIPLES Each filter is implemented as two cascaded Sallen–Key 2nd order (Butterworth) stages, resulting in a final 4th order LR4 filter. Topology: non-inverting Sallen–Key, optimal for NE5532. For all stages: Cascade gain: K ≈ 1.586 This provides a Q factor of 0.707 (Butterworth), which in combination gives a Linkwitz–Riley 4th order. 3. COMPONENT VALUES FOR FILTERS 3.1 Universal Parameters RC chain capacitors: 10 nF, film capacitors, tolerance ≤ 5% Resistors: metal-film, tolerance ≤ 1% The gain of each stage is set by feedback resistors: Rf = 5.9 kΩ Rg = 10 kΩ K ≈ 1 + (Rf / Rg) ≈ 1.59 The circuit should allow for the installation of a small capacitor (10–47 pF) in parallel with Rf (footprint provided) for possible stability correction (not mandatory to install in the first revision). 3.2 650 Hz Filters (Low-frequency boundary for MF) These are used for the division between W250 and MR130. LP650 — Low-frequency Filter 2nd Order R1 = 24.9 kΩ R2 = 24.9 kΩ C1 = 10 nF C2 = 10 nF Two stages: LP650 #1 and LP650 #2. HP650 — MF High-frequency Filter 2nd Order Same values: R1 = 24.9 kΩ R2 = 24.9 kΩ C1 = 10 nF C2 = 10 nF Two stages: HP650 #1 and HP650 #2. 3.3 2500 Hz Filters (Upper boundary for MF) These are used for the division between MR130 → MDT-12. LP2500 — High-pass MF Filter R1 = 6.34 kΩ R2 = 6.34 kΩ C1 = 10 nF C2 = 10 nF Two stages: LP2500 #1 and LP2500 #2. HP2500 — High-frequency Filter Same values: R1 = 6.34 kΩ R2 = 6.34 kΩ C1 = 10 nF C2 = 10 nF Two stages: HP2500 #1 and HP2500 #2. 4. OPERATIONAL AMPLIFIERS The NE5532 (dual op-amp, DIP-8 or SOIC-8) is used. A minimum of 4 packages (8 channels) for filters: NE5532 Function U1A, U1B LP650 #1, LP650 #2 (LF) U2A, U2B HP650 #1, HP650 #2 (Lower MF cut-off) U3A, U3B LP2500 #1, LP2500 #2 (Upper MF cut-off) U4A, U4B HP2500 #1, HP2500 #2 (HF) Additionally: U5 — input buffer / preamplifier (both channels) If necessary, an additional NE5532 (U6) for the balanced input (see section 6.2). All NE5532 should have local decoupling for power supply (see section 5.1). 5. CROSSOVER POWER SUPPLY AM4T-4815DZ DC/DC module is used: Input: 36–72 V, connected to the 48 V power supply for TPA3255 amplifiers. Output: +15 V / –15 V, up to 0.133 A per side. Maximum output capacitance: ≤ 47 µF per side (according to the datasheet). 5.1 Power Filtering Input (48 V): RC variant (simpler, acceptable for the first revision): R = 1–2 Ω / 1–2 W C = 47–100 µF (for 63 V or higher) LC variant (preferred for improved noise immunity): L = 10–22 µH C = 47–100 µF The developer may implement LC if confident in choosing the inductance and its parameters. Output +15 V and –15 V (general filtering): Electrolytic capacitor 10–22 µF per side 100 nF (X7R) per side to GND Local decoupling for NE5532 (REQUIRED): For each NE5532 package: 100 nF between +15 V and GND 100 nF between –15 V and GND Place as close as possible to the op-amp power pins (short traces). Additional local filtering for power lines: For each NE5532, decouple from the ±15 V main rails: Either 4.7–10 Ω resistor in series with +15 V and –15 V, Or ferrite bead in each rail. After this component, place local capacitors (100 nF + 1–4.7 µF) to ground. 6. INPUT TRACT: INPUTS, BUFFER, ADJUSTMENT 6.1 Unbalanced Input (RCA / Jack / Linear) The main mode is the unbalanced linear input, for example, RCA. Input tract structure: RF-filter and protection: Signal → series resistor Rin_series = 100–220 Ω After resistor — capacitor Cin_RF = 470–1000 pF to GND This forms a low-level RF filter and reduces high-frequency noise. DC-block (low-pass HP-filter): Capacitor Cin_DC = 2.2–4.7 µF film in series Resistor to ground Rin_to_GND = 47–100 kΩ Cut-off frequency — negligible in the audio range but removes DC. Input buffer / preamplifier (NE5532, U5): Non-inverting configuration. Input — after DC-block. Gain: adjustable, e.g., Rg_fixed = 10 kΩ (to GND through trimmer) Rf = 10–20 kΩ + footprint for trimmer (e.g., 20 kΩ) The gain should be in the range of 0 dB to +10…+12 dB. Possible configuration: Rg = 10 kΩ fixed Rf = 10 kΩ + 10 kΩ trimmer in series. This allows adjusting the overall level of the crossover according to the source and amplifier levels. Buffer output: A low-impedance output (after NE5532) This signal is simultaneously fed to the inputs of all filters: LP650 (LF) HP650 → LP2500 (MF) HP2500 (HF) 6.2 Balanced Input (XLR / TRS) — Optional, but laid out on the board The board should allow for a balanced input, even if it’s not used in the first revision. Implementation requirements: XLR/TRS connector (L, R, GND) or separate 3-pin header. Simple differential receiver on NE5532 (extra U6 package or use one channel of U5 if sufficient). Circuit: classic instrumentation amplifier or differential amplifier: Inputs: IN+ and IN– Output — single-ended signal of the same level (or slightly amplified), fed to DC-block and buffer (or directly to the buffer if integrated). Switching between balanced/unbalanced mode: Implement using jumpers / bridges or adapters: Either switch before the buffer, Or use two separate pads, one of which is unused. All balanced input grounds must be connected to the same AGND point as the unbalanced input to avoid ground loops. 7. LEVEL ADJUSTMENT OF BANDS (BEST METHOD) The level adjustment of each band (LOW, MID, HIGH) is required to match the sensitivity of the speakers and amplifiers. Recommended method: After each full filter (after LP650×2, MID-chain HP650×2 → LP2500×2, HP2500×2), install: A passive attenuator: Series: Rseries (0–10 kΩ, adjustable) Shunt: Rshunt to GND (10–22 kΩ, fixed or adjustable) For simplicity and reliability: Implementation on the board: For each band (LOW, MID, HIGH) provide: Pad for multi-turn trimmer 10–20 kΩ as a divider (between signal and ground) in the "level adjustment" configuration. If adjustment is not needed — install a fixed divider (two resistors) or simply use a jumper. It is preferable to use: For setup: multi-turn trimmers 10–20 kΩ, available on the top side of the board. Nominals for the initial configuration can be selected through measurements, but the PCB should have flexibility. This provides: Accurate balancing of band volumes without interfering with the filters; Flexibility for fine-tuning to the specific characteristics of the speakers. 8. INPUTS AND OUTPUTS OF THE CROSSOVER (FINAL) 8.1 Inputs 1× Unbalanced linear input (RCA or 3-pin header) 1× Balanced input (XLR/TRS or 3-pin header) — optional, but space must be provided on the board. Input impedance (unbalanced after RF-filter): 22–50 kΩ. The input tract must be implemented using shielded cables. 8.2 Outputs Outputs to amplifiers: Output Signal LOW OUT After LP650×2 (LF) MID OUT After HP650×2 → LP2500×2 (MF) HIGH OUT After HP2500×2 (HF) Each output: Series resistor 100–220 Ω (prevents possible oscillations and simplifies cable management). A nearby own AGND pad (ground output), so the signal pair SIG+GND runs together. Outputs should be compactly placed on 2-pin connectors (SIG+GND) or 3-pin (SIG+GND+reserve). 9. PCB DESIGN REQUIREMENTS 9.1 Board Number of layers: 2 layers Bottom layer: solid analog ground (AGND). 9.2 Component Placement Key principles: RC chains of each filter (R1, R2, C1, C2, Rf, Rg) should form a compact "island" around the corresponding op-amp. If elements are placed too far apart, the filter will not work correctly (calculated frequency and Q will shift). Feedback tracks (Rf and Rg) should be as short and direct as possible. The AM4T-4815DZ module should be placed: Far from the input buffer, Far from the first filter stages, If necessary, make a "cutout" in the ground under it to limit noise propagation. Place the input connector, RF-filter, and buffer on one side of the board, and the output connectors on the opposite side. 9.3 Ground The entire audio circuit uses one analog ground: AGND. Connect AGND to the power ground (48 V and amplifiers) at one point ("star"). The star should be implemented as: One point/pad where: The ground of the input, The ground of the filters, The ground of the outputs, The ground of the DC/DC. Avoid long narrow "ground" jumpers — use wide polygons with a single connection point. 9.4 Placement of Output Connectors Group LOW/MID/HIGH compactly. Each should have its own GND pad nearby. Route the SIG+GND pairs as signal pairs, avoiding large loops. 10. ADDITIONAL ELEMENTS: PROTECTION, TEST POINTS 10.1 Test Points (TP) Be sure to provide test points (pads): TP_IN — crossover input (after buffer) TP_LOW — LF filter output TP_MID — MF filter output TP_HIGH — HF filter output TP_+15, TP_–15, TP_GND — power control This greatly simplifies debugging with an oscilloscope. 10.2 Power Protection On the 48 V input — it is advisable to provide: Diode/scheme for reverse polarity protection (if possible), TVS diode or varistor for voltage spikes (optional). 10.3 Possible Stability Correction Pads for small capacitors (10–47 pF) in parallel with Rf in buffers and, if necessary, in some stages — in case of stability issues (this can be not installed in the first revision, but footprints should be provided). 11. BILL OF MATERIALS (BOM) Operational Amplifiers: NE5532 — 4 pcs (filters) NE5532 — 1–2 pcs (input buffer and balanced input) Total: 5–6 NE5532 packages. Resistors (1%, metal-film): 24.9 kΩ — 8 pcs 6.34 kΩ — 8 pcs 10 kΩ — ≥ 12 pcs (feedback, buffers, etc.) 5.9 kΩ — 8 pcs 22 kΩ — 1–2 pcs (input, auxiliary chains) 47–100 kΩ — several pcs (DC-block, input) 100 kΩ — 1 pc (if needed) 100–220 Ω — 4–6 pcs (outputs, RF, protection) 4.7–10 Ω — 2 pcs for each op-amp or group of op-amps (power filtering) — quantity to be clarified during routing. Trimmer Resistors: 10–20 kΩ multi-turn — one for each band (LOW, MID, HIGH) 10–20 kΩ — 1–2 pcs for the input buffer (overall gain adjustment). Capacitors: 10 nF film — 16 pcs (RC filters) 2.2–4.7 µF film — 1–2 pcs (input DC-block) 10–22 µF electrolytic — 2–4 pcs (DC/DC outputs) 1–4.7 µF (X7R / tantalum) — 1 pc for local power filtering (optional). 100 nF ceramic X7R — 10–20 pcs (local decoupling for each op-amp) 470–1000 pF — 1–2 pcs (RF filter on the input) 10–47 pF — optional for stability correction (Rf). Power Supply: AM4T-4815DZ — 1 pc Inductor 10–22 µH (if LC filter) — 1 pc R 1–2 Ω / 1–2 W — 1 pc (if RC filter). Connectors: Input (RCA + 3-pin for internal input) Balanced (XLR/TRS or 3-pin header) Outputs LOW/MID/HIGH — 2-pin/3-pin connectors. 12. TESTING RECOMMENDATIONS 12.1 First Power-up Apply ±15 V without installed op-amps. Check with a multimeter: +15 V –15 V No short circuits in the power supply. Install the op-amps (NE5532). Apply a sine wave of 100–200 mV RMS (signal generator). Check with an oscilloscope at TP: LP650 — should pass LF and roll off everything above 650 Hz. HP650 — should roll off LF, pass everything above 650 Hz. LP2500 — should roll off above 2500 Hz. **HP250 0** — should pass everything above 2500 Hz. 12.2 Phase Check The Linkwitz–Riley 4th order should give a flat frequency response when summed at the crossover points. This can be verified with REW/Arta. 12.3 Noise Check If there is noticeable "shshsh" or whistling: Check: Grounding layout (star) Placement and filtering of AM4T-4815DZ Presence and proper installation of all 100 nF and local filters. 13. FINAL RECOMMENDATIONS FOR BEGINNERS Do not rush, build the circuit step by step: input → buffer → one filter → test, then continue. Check component values at least twice before soldering. Filters should be routed as compact "islands" around the op-amp, do not stretch R and C across the board. Always remember the rule: "The feedback trace should be as short as physically possible." Before ordering the PCB, make a "paper prototype": print at 1:1, cut it out, place real components to check everything fits.... show moreAbove Copper Battle Mech
USB-C PD-Sink Interface with Molex 105444-0001 Phone Port, TPS25751 Power Delivery, TPS22917 Load Switching, FT601Q-B-T USB Data Bridge, and MicroSD with ESD Protection... show moreFast Silver Flubber
Create a schematic diagram of an electric fence controller using the NE556 dual timer IC. The circuit must include all components with clear electronic symbols (resistors, capacitors, transistors, diode, relay) connected by lines as in a real circuit diagram. Specifications: 1. Power supply: - Vcc = +12V connected to pin 14 of the NE556. - Pin 1 of the NE556 to ground. 2. Timer A (active 10 seconds): - Pin 2 (Trigger A) receives a pulse from transistor Q2 (contact detector). - Pin 6 (Threshold A) connected to Pin 7 (Discharge A). - R1 = 1 MΩ between Pin 7 and +12V. - C1 = 10 µF between Pin 6 and ground. - Pin 3 (Out A) goes through a 4.7 kΩ resistor to the base of Q1 (BC547 NPN transistor). - Pin 3 also connected via a 100 nF capacitor to Pin 13 (Trigger B of Timer B). 3. Timer B (rest 10 seconds): - Pin 9 (Discharge B) and Pin 8 (Threshold B) connected together. - R2 = 1 MΩ between Pin 9 and +12V. - C2 = 10 µF between Pin 8 and ground. - Pin 12 (Out B) can be optionally used to block retrigger of Timer A. 4. Relay driver stage: - Q1 = BC547 NPN transistor. - Base connected through 4.7 kΩ resistor to Pin 3 (Out A). - Emitter to ground. - Collector connected to one side of the relay coil. - Other side of relay coil connected to +12V. - A diode 1N4007 placed in parallel with the relay coil (cathode to +12V, anode to collector of Q1). - Relay contacts switch the +12V supply to the electric fence energizer. 5. Contact detector: - Shunt resistor ≈0.1 Ω placed in series with the fence output. - Q2 = BC547 NPN transistor, base connected to the shunt, emitter to ground, collector to Pin 2 (Trigger A). - When current flows through the shunt, Q2 provides a trigger pulse to Timer A. Please draw the schematic in a standard style with components connected by straight lines, not in block diagrams. Show clear pin numbers of the NE556 and all external components.... show moreSecret Crimson Hoverboard
Circuit Overview The circuit you're describing is a digital counter that uses an LDR (Light-Dependent Resistor) and a transistor to detect wheel rotations. The counter's output is then displayed on a seven-segment LED display. Here's a breakdown of the components and their roles: 1. Wheel Rotation Detection (LDR and Transistor) * LDR: The LDR acts as a sensor to detect changes in light intensity. You can mount it on the wheel' or near it, with a reflective or non-reflective surface attached to the wheel. As the wheel rotates, the LDR will be exposed to alternating light and dark conditions, causing its resistance to change. * Transistor: The transistor (e.g., a 2N2222 NPN BJT) is used as a switch or amplifier. The changing resistance of the LDR is used to control the base current of the transistor. When the LDR's resistance drops (more light), the transistor turns on, and when the resistance increases (less light), the transistor turns off. This converts the analog change in light into a digital ON/OFF signal (a pulse). 2. Counter (7490) * 7490 IC: This is a decade counter, meaning it can count from 0 to 9. The output of the transistor (the pulses) is fed into the clock input of the 7490. Each pulse represents one rotation of the wheel, and the 7490 increments its count accordingly. The 7490 has four outputs (Q0, Q1, Q2, Q3) that represent the BCD (Binary-Coded Decimal) equivalent of the count. 3. BCD to Seven-Segment Decoder (7446) * 7446 IC: The 7446 is a BCD-to-seven-segment decoder/driver. Its job is to take the 4-bit BCD output from the 7490 and convert it into a signal that can drive a seven-segment LED display. It has seven outputs (a, b, c, d, e, f, g), each corresponding to a segment of the LED display. 4. Seven-Segment LED Display * Seven-Segment Display: This display is used to show the count. The 7446's outputs are connected to the corresponding segments of the display. 5. Power Supply and Other Components * Power Supply: A regulated DC power supply (e.g., 5V) is needed to power all the ICs and components. * Resistors: Resistors are used for current limiting (e.g., for the LDR and the LED display) and biasing the transistor. * Capacitors: A capacitor might be used for debouncing the signal from the transistor to prevent multiple counts for a single rotation. Conceptual Connections Here is a step-by-step breakdown of how the components would be connected: * LDR and Transistor: * The LDR and a current-limiting resistor are connected in series across the power supply. * The junction between the LDR and the resistor is connected to the base of the NPN transistor. * The emitter of the transistor is connected to ground. * The collector of the transistor, with a pull-up resistor, becomes the output for the pulse signal. * Transistor to 7490: * The output from the transistor's collector is connected to the clock input of the 7490 IC. * The 7490's reset pins (MR and MS) should be connected to ground for normal counting operation. * 7490 to 7446: * The BCD outputs of the 7490 (Q0, Q1, Q2, Q3) are connected to the BCD inputs of the 7446 (A, B, C, D). * 7446 to Seven-Segment Display: * The outputs of the 7446 (a, b, c, d, e, f, g) are connected to the corresponding segments of the seven-segment display. * Crucially, you need to use current-limiting resistors (e.g., 330Ω) in series with each segment to protect the LEDs from high current. * The common terminal of the seven-segment display is connected to the power supply (for a common anode display) or ground (for a common cathode display). This setup creates a chain reaction: wheel rotation changes light, which changes LDR resistance, which turns the transistor on/off, generating a pulse. This pulse increments the 7490, and the 7490's output is decoded by the 7446, which then displays the count on the seven-segment LED.... show morePrepared Salmon Liquid Breathing Apparatus
This project is focused on designing a highly efficient PCB for a switching power supply using a robust selection of electronic components. Our design leverages a flyback topology featuring a ferrite transformer (options EE25 or EE33), a PWM integrated circuit (TL494, SG3525, or UC3842), and a power MOSFET (IRF840 or a similar alternative) for effective high-voltage switching. Fast and reliable rectification is ensured by using a Schottky diode (MBR20100 or FR107) along with a rectifier bridge built from four 1N4007 diodes or a dedicated 4A bridge. Key stabilization and regulation components include the TL431 reference regulator and a Zener diode for precise voltage control in critical areas. For input and output filtering, the design incorporates electrolytic capacitors (470 µF, 25 V for output and 400 V, 100 µF for input) and ceramic capacitors (ranging from 1 nF to 100 nF) to limit high-frequency noise. Additional safety and operational features are provided by an NTC (soft-start thermistor) to prevent current spikes, various resistors (from 1 Ω to 100kΩ), an optocoupler (PC817) for signal isolation, a switch, and a protection fuse. Before moving forward with a finalized PCB layout and schematic details, we need to clarify a few design choices: 1. Transformer Choice: Would you prefer using the EE25 or the EE33 ferrite transformer variant as the heart of the switching power supply design? This detailed approach ensures that the power supply not only meets rigorous performance and safety standards but also supports a reliable and scalable solution for various electronic applications. #PCBDesign #SwitchingPowerSupply #Electronics #SMPS #PowerElectronics #FlybackConverter #CircuitDesign #ElectronicsComponents... show moreCoffee Waker Main HQ W/ Module V3.1 82a2
The Coffee Waker is a unique, full-featured coffee maker alarm clock designed to brighten your morning routine with the irresistible aroma of freshly brewed coffee. By seamlessly integrating multiple high-performance components onto a single main board, the Coffee Waker delivers both functionality and innovation: - **Processing & Connectivity:** Powered by an ESP32-S3, it offers built-in WiFi and Bluetooth, enabling smart scheduling, remote control, and over-the-air updates. - **Precision Sensing:** A 16-bit load cell ADC provides accurate measurements, ensuring precise weight sensing for coffee bean dosing or liquid volume monitoring. - **Quality Audio Output:** The onboard 16-bit MP3 DAC guarantees clear audio playback, from alarm sounds to any custom wake-up messages you program. - **Robust Power Handling:** With a 120V heater cartridge relay and a 12V wakeup light converter integrated, the board safely manages high voltage switching and provides a visually soothing light routine. - **Thoughtful Integration:** Designed with automotive-grade components, precision regulators, and careful signal routing, the Coffee Waker Main Board combines performance with reliability while keeping a compact footprint. Overall, the Coffee Waker transcends the ordinary alarm clock, merging daily utility with modern connectivity and a touch of luxury—making it the perfect addition to any nightstand. #CoffeeWaker #SmartHome #CoffeeMaker #AlarmClock #MorningRoutine #Technology #Innovation... show moreCoffee Waker Main HQ W/ Module V3.1 82a2
The Coffee Waker is a unique, full-featured coffee maker alarm clock designed to brighten your morning routine with the irresistible aroma of freshly brewed coffee. By seamlessly integrating multiple high-performance components onto a single main board, the Coffee Waker delivers both functionality and innovation: - **Processing & Connectivity:** Powered by an ESP32-S3, it offers built-in WiFi and Bluetooth, enabling smart scheduling, remote control, and over-the-air updates. - **Precision Sensing:** A 16-bit load cell ADC provides accurate measurements, ensuring precise weight sensing for coffee bean dosing or liquid volume monitoring. - **Quality Audio Output:** The onboard 16-bit MP3 DAC guarantees clear audio playback, from alarm sounds to any custom wake-up messages you program. - **Robust Power Handling:** With a 120V heater cartridge relay and a 12V wakeup light converter integrated, the board safely manages high voltage switching and provides a visually soothing light routine. - **Thoughtful Integration:** Designed with automotive-grade components, precision regulators, and careful signal routing, the Coffee Waker Main Board combines performance with reliability while keeping a compact footprint. Overall, the Coffee Waker transcends the ordinary alarm clock, merging daily utility with modern connectivity and a touch of luxury—making it the perfect addition to any nightstand. #CoffeeWaker #SmartHome #CoffeeMaker #AlarmClock #MorningRoutine #Technology #Innovation... show moreWiFi RF-ID lock reference design vnb3 n8zC
This project is a WiFi RF-ID Lock, which uses a Espressif ESP-8684 microcontroller for WiFi connectivity and a Handson Technology RC522 for RF-ID functionality. It also includes an OLED display and user control via a switch. A step-up power converter ensures consistent 3.3V power. #WiFi #MCU #ReferenceDesign #project #ESP8684 #lock #OLED #referenceDesign #simple-embedded #espressif #template #reference-design... show moreBTS50085-1TMA
Smart High-Side Power Switch, PROFET 24V, Single, 7,2mOhm, 50A, 58V, TO220-7 BTS50085 PROFET 24V TO*263*TabPin4*... show moreWiFi RF-ID lock reference design g7u8
This project is a WiFi RF-ID Lock, which uses a Espressif ESP-8684 microcontroller for WiFi connectivity and a Handson Technology RC522 for RF-ID functionality. It also includes an OLED display and user control via a switch. A step-up power converter ensures consistent 3.3V power. #WiFi #MCU #ReferenceDesign #project #ESP8684 #lock #OLED #referenceDesign #simple-embedded #espressif #template #reference-design... show moreFDB1D7N10CL7 4d05
The FDB1D7N10CL7 is an N-Channel Shielded Gate POWERTRENCH® MOSFET manufactured by ON Semiconductor. This advanced MOSFET leverages ON Semiconductor's POWERTRENCH process, incorporating Shielded Gate technology to deliver minimized on-state resistance and superior switching performance with a high-quality soft body diode. The component features a maximum drain-to-source voltage (VDS) of 100 V and can handle continuous drain currents up to 268 A at 25°C. It boasts a low RDS(on) value of 1.7 mΩ at a gate-to-source voltage (VGS) of 12 V and drain current (ID) of 100 A, making it highly efficient for power management applications. Key applications include industrial motor drives, power supplies, automation, battery-operated tools, solar inverters, and energy storage systems. The FDB1D7N10CL7 is housed in a robust D2PAK7 (TO-263 7 LD) package and is designed to withstand a wide range of operating temperatures from -55°C to +175°C.... show morepresence-sensing-esp32-c3
A presence sensing device powered by a mean well AC DC converter with a ESP32 C3 for it's brain plus a ld2410 mmwave module. the relay can be used to switch mains power. the ld2410 is connected through the terminal connectors.... show moreAPM2300CA 5161
The APM2300CA, manufactured by Sinopower Semiconductor, is an N-Channel Enhancement Mode MOSFET designed for efficient power management in notebook computers, portable equipment, and battery-powered systems. This MOSFET operates with a maximum drain-source voltage of 20V and can handle a continuous drain current of up to 6A. It features a low drain-source on-state resistance (R_DS(ON)) of 25mΩ at V_GS = 10V, making it highly efficient for switching applications. The component is packaged in a compact SOT-23 form factor and is compliant with RoHS standards, ensuring it is both lead-free and environmentally friendly. Notably, the APM2300CA offers reliable and rugged performance, with a maximum junction temperature of 150°C and various gate charge characteristics that support fast switching. This MOSFET is ideal for applications requiring high efficiency and compact size.... show moreAO3414 526a
The AO3414 from Alpha & Omega Semiconductor is an N-Channel Enhancement Mode Field Effect Transistor (FET) leveraging advanced trench technology to deliver excellent RDS(ON), low gate charge, and reliable operation with gate voltages as low as 1.8V. Engineered for applications requiring reliable load switching or precise control in PWM circuits, the AO3414 is well-suited for high-efficiency performance. This component features a maximum drain-source voltage (VDS) of 20V and supports a continuous drain current (ID) of 4.2A at VGs of 4.5V. Distinguishing characteristics include RDS(ON) values of less than 50mΩ at VGS = 4.5V, 63mΩ at VGS = 2.5V, and 87mΩ at VGS = 1.8V, ensuring minimal power loss and optimal thermal efficiency. Packaged in a compact TO-236 (SOT-23) form factor, it meets Pb-free standards and is available as the AO3414L for a Green Product option, both versions maintaining electrical equivalence. The AO3414 also boasts fast switching times and robust thermal performance, with comprehensive specifications confirming its suitability for high-performance consumer electronics.... show moreNTTFS4C06NTAG
The NTTFS4C06N, manufactured by ON Semiconductor, is a high-performance, single N-Channel Power MOSFET designed for applications requiring efficient switching and low conduction losses. This MOSFET is rated for a maximum drain-to-source voltage (VDSS) of 30 V and can handle continuous drain currents up to 67 A. Key features include a low RDS(on) of 4.2 mΩ at VGS = 10 V and 6.1 mΩ at VGS = 4.5 V, which minimizes conduction losses, and optimized gate charge characteristics that reduce switching losses. Additionally, the component boasts low capacitance to minimize driver losses, making it ideal for use in DC-DC converters, power load switches, and notebook battery management systems. The device is RoHS compliant, Pb-free, and halogen-free, ensuring environmentally friendly compliance. The NTTFS4C06N is available in a compact WDFN8 package, making it suitable for high-density circuit designs.... show moreDMN3016LFDF-7
The DMN3016LFDF is an N-Channel Enhancement Mode MOSFET manufactured by Diodes Incorporated, designed for high-efficiency power management applications. This MOSFET features a low on-state resistance (RDS(ON)) of 12mΩ at VGS = 10V and 16mΩ at VGS = 4.5V, with a maximum drain current (ID) of 10A at TA = +25°C. The device operates with a drain-source voltage (BVDSS) of 30V and a gate-source voltage (VGSS) of +20V. It is ideally suited for battery management, power management functions, and DC-DC converters due to its superior switching performance and low gate threshold voltage. The component is housed in a U-DFN2020-6 (Type F) package with a 0.6mm profile, making it suitable for low-profile applications. It is also fully RoHS compliant, halogen and antimony-free, and qualified to JEDEC standards for high reliability.... show moreAO3414 9633
The AO3414, manufactured by Alpha & Omega Semiconductor, is a cutting-edge N-Channel Enhancement Mode Field Effect Transistor designed for exceptional RDS(ON) performance, low gate charge, and operation with gate voltages as low as 1.8V. The AO3414 is well-suited for load switching and PWM applications, providing a durable solution with a maximum drain-source voltage (VDS) of 20V and a continuous drain current (ID) up to 4.2A at room temperature. This component offers multiple thresholds for minimal on-resistances, including RDS(ON) values of less than 50mΩ at VGS of 4.5V, less than 63mΩ at VGS of 2.5V, and less than 87mΩ at VGS of 1.8V. Packaged in a TO-236 (SOT-23) form factor, the AO3414 ensures thermal efficiency with maximum junction-to-ambient thermal resistances of 90°C/W for transient conditions and 125°C/W for steady-state. Additional features include a maximum power dissipation of 1.4W at 25℃, a gate-source voltage (VGS) rated at +8V, and dynamic switching characteristics optimized for high-frequency applications. Available in both standard (Pb-free) and Green Product (AO3414L) versions, the AO3414 complies with RoHS and Sony 259 environmental standards, ensuring it is environmentally friendly and reliable for various consumer market applications.... show moreHistory change playground 7ca2
This is a power management board which supports solar (4.4V - 6V), USB (5V) and Battery (3.2 - 4.2V) Supports battery recharging by either the solar or USB. The output should be 3.3V at 1A, 5V at 600mA and 12V at 500mA The project uses switching regulators and has 3 independent rails for the 3 outputs. #templates #iot #powermanagement... show more