• set ground fill at the bottom and via behaviour tests dstr

    set ground fill at the bottom and via behaviour tests dstr

    This is a reference design of a buck converter based on LTC3406 with 1.2V 0.6A output #referenceDesign #powermanagement #analogdevices #template

    aidil01

    1 Comment


  • set ground fill at the bottom and via behaviour tests gJ6G

    set ground fill at the bottom and via behaviour tests gJ6G

    This is a reference design of a buck converter based on LTC3406 with 1.2V 0.6A output #referenceDesign #powermanagement #analogdevices #template

    kartick

    1 Comment


  • 3V3 Regulator with LED ground fills

    3V3 Regulator with LED ground fills

    A simple fixed linear voltage regulator board that can provide 3.3V up to 1A output and could operate down to 1V input-to-output differential. #firstpcbFlux

    jharwinbarrozo

    1 Comment


  • daughterboard positive ground

    daughterboard positive ground

    Welcome to your new project. Imagine what you can build here.

    borjao


  • set ground fill at the bottom and via behaviour tests

    set ground fill at the bottom and via behaviour tests

    This is a reference design of a buck converter based on LTC3406 with 1.2V 0.6A output #referenceDesign #powermanagement #analogdevices #template

    dacre


  • photoresistor testing ground

    photoresistor testing ground

    Welcome to your new project. Imagine what you can build here.

    jharwinbarrozo


  • BOM export testing ground

    BOM export testing ground

    Welcome to your new project. Imagine what you can build here.

    jharwinbarrozo


  • Two terminal, one ground

    Two terminal, one ground

    Welcome to your new project. Imagine what you can build here.

    robert


  • Ground Rover

    Ground Rover

    Welcome to your new project. Imagine what you can build here.


  • Now with solder mask because ground fill is present

    Now with solder mask because ground fill is present

    Welcome to your new project. Imagine what you can build here.

    jharwinbarrozo


  • No solder mask if no ground fill in 3d?

    No solder mask if no ground fill in 3d?

    Welcome to your new project. Imagine what you can build here.

    jharwinbarrozo


  • test missing ground connection host

    test missing ground connection host

    Welcome to your new project. Imagine what you can build here.

    &


  • Miserable Magenta Gadget Copter

    Miserable Magenta Gadget Copter

    Unified Ground Net and Automatic Copper Ground Plane for Schematic and PCB Designs

    28 Comments


  • P-001_AnandKumar_IOTSentinels

    P-001_AnandKumar_IOTSentinels

    This Gerber file contains the necessary information for fabricating the PCB design of a Bluetooth-enabled headphone. The design includes multiple layers, showcasing the electrical connections and component placements on both the top and bottom layers. Top Layer (Copper traces and components): The top copper layer is primarily responsible for routing the signals from key components such as the ESP32 module, MAX98357A audio amplifier, and the microphone. The ESP32 module, responsible for Bluetooth communication, is positioned centrally to optimize signal flow and minimize interference. Decoupling capacitors (100nF) are placed near critical components to ensure signal stability and noise suppression. Audio signal paths, as well as power distribution, are carefully routed to prevent cross-talk and ensure high-quality sound. Bottom Layer (Copper traces): The bottom layer contains the ground plane and additional routing for power and signal connections. The charging module (TP4056) and voltage regulator (AMS1117) are placed to manage power distribution, ensuring stable battery charging and regulated output for the ESP32 and other components. Connections to external interfaces such as the MicroSD breakout and auxiliary input are routed efficiently to avoid conflicts. Additional Components: All critical components are labeled, including decoupling capacitors (100nF) and resistors where needed, as well as external interfaces like the MicroSD card breakout. Mounting holes are provided for secure installation in a headphone casing, ensuring the board can be integrated seamlessly into the final product. The PCB is designed to minimize noise, with short signal paths and proper grounding for high-fidelity audio performance. This Gerber file ensures accurate manufacturing by containing data for copper layers, silkscreen, solder mask, and drill files.

    &

    23 Comments


  • Stereo WiFi Camera Reference Design c6ce

    Stereo WiFi Camera Reference Design c6ce

    This is a stereo WiFi camera reference design using dual ESP32-CAM modules for edge computing. The design includes connections for power, ground, and core communication features; UART for control & data transfer, and BOOT pins for mode selection. #WiFi #MCU #stereo #ReferenceDesign #project #ESP32 #camera #referenceDesign #edgeComputing #espressif #template #reference-design

    1 Comment


  • Stereo WiFi Camera Reference Design

    Stereo WiFi Camera Reference Design

    This is a stereo WiFi camera reference design using dual ESP32-CAM modules for edge computing. The design includes connections for power, ground, and core communication features; UART for control & data transfer, and BOOT pins for mode selection. #WiFi #MCU #stereo #ReferenceDesign #project #ESP32 #camera #referenceDesign #edgeComputing #espressif #template #reference-design

    1 Comment


  • seguidor de linea junior

    seguidor de linea junior

    The Junior line-following robot, equipped with photoresistors and an operational amplifier, is capable of detecting and following lines with precision. This compact and efficient robot uses photoresistors to capture contrast information on the ground and, through the operational amplifier, quickly processes this data to adjust its trajectory. It's an ideal tool for introducing students to the world of robotics and engineering. // El robot seguidor de línea Junior, equipado con fotoresistencias y un amplificador operacional, es capaz de detectar y seguir líneas con precisión. Este robot compacto y eficiente utiliza las fotoresistencias para captar la información de contraste en el suelo y, mediante el amplificador operacional, procesa rápidamente estos datos para ajustar su trayectoria. Es una herramienta ideal para introducir a estudiantes en el mundo de la robótica y la ingeniería.

    1 Comment


  • Ground2

    Ground2

    A common return path for electric current. Commonly known as ground.

    1 Comment


  • Important Amaranth Replicator

    Important Amaranth Replicator

    Battery-Powered 2-Layer LM358 Analog Replicator PCB with Dual-Gain Edge Potentiometer and Solid 12 V Ground Plane


  • Active Three-Way Crossover on NE5532

    Active Three-Way Crossover on NE5532

    TECHNICAL ASSIGNMENT AND DESIGN GUIDE Active Three-Way Crossover on NE5532 Powered by AM4T-4815DZ and Amplifiers TPA3255 (Updated Version) 1. GENERAL PURPOSE OF THE DEVICE The goal of the development is to create an active three-way audio crossover for one channel of a loudspeaker system, working with the following drivers: LF: VISATON W250 MF: VISATON MR130 HF: Morel MDT-12 Each frequency range is amplified by a separate power amplifier: LF: TPA3255 in PBTL mode (mono) MF + HF: second TPA3255 in stereo mode (one channel for MF, the other for HF) The crossover accepts a single linear audio signal (mono) and divides it into three frequency bands: Range Frequency Range LF 0 – 650 Hz MF 650 – 2500 Hz HF 2500 Hz and above Filter type: Linkwitz–Riley 4th order (24 dB/oct) at each crossover point (650 Hz and 2500 Hz). The crossover must provide: minimal self-noise; no audible distortion in the audible range; stable operation with NE5532 at ±15 V power supply; easy adjustment of the level for each band, as well as the overall level (via the input buffer). 2. FILTER TYPES AND BASIC OPERATING PRINCIPLES Each filter is implemented as two cascaded Sallen–Key 2nd order (Butterworth) stages, resulting in a final 4th order LR4 filter. Topology: non-inverting Sallen–Key, optimal for NE5532. For all stages: Cascade gain: K ≈ 1.586 This provides a Q factor of 0.707 (Butterworth), which in combination gives a Linkwitz–Riley 4th order. 3. COMPONENT VALUES FOR FILTERS 3.1 Universal Parameters RC chain capacitors: 10 nF, film capacitors, tolerance ≤ 5% Resistors: metal-film, tolerance ≤ 1% The gain of each stage is set by feedback resistors: Rf = 5.9 kΩ Rg = 10 kΩ K ≈ 1 + (Rf / Rg) ≈ 1.59 The circuit should allow for the installation of a small capacitor (10–47 pF) in parallel with Rf (footprint provided) for possible stability correction (not mandatory to install in the first revision). 3.2 650 Hz Filters (Low-frequency boundary for MF) These are used for the division between W250 and MR130. LP650 — Low-frequency Filter 2nd Order R1 = 24.9 kΩ R2 = 24.9 kΩ C1 = 10 nF C2 = 10 nF Two stages: LP650 #1 and LP650 #2. HP650 — MF High-frequency Filter 2nd Order Same values: R1 = 24.9 kΩ R2 = 24.9 kΩ C1 = 10 nF C2 = 10 nF Two stages: HP650 #1 and HP650 #2. 3.3 2500 Hz Filters (Upper boundary for MF) These are used for the division between MR130 → MDT-12. LP2500 — High-pass MF Filter R1 = 6.34 kΩ R2 = 6.34 kΩ C1 = 10 nF C2 = 10 nF Two stages: LP2500 #1 and LP2500 #2. HP2500 — High-frequency Filter Same values: R1 = 6.34 kΩ R2 = 6.34 kΩ C1 = 10 nF C2 = 10 nF Two stages: HP2500 #1 and HP2500 #2. 4. OPERATIONAL AMPLIFIERS The NE5532 (dual op-amp, DIP-8 or SOIC-8) is used. A minimum of 4 packages (8 channels) for filters: NE5532 Function U1A, U1B LP650 #1, LP650 #2 (LF) U2A, U2B HP650 #1, HP650 #2 (Lower MF cut-off) U3A, U3B LP2500 #1, LP2500 #2 (Upper MF cut-off) U4A, U4B HP2500 #1, HP2500 #2 (HF) Additionally: U5 — input buffer / preamplifier (both channels) If necessary, an additional NE5532 (U6) for the balanced input (see section 6.2). All NE5532 should have local decoupling for power supply (see section 5.1). 5. CROSSOVER POWER SUPPLY AM4T-4815DZ DC/DC module is used: Input: 36–72 V, connected to the 48 V power supply for TPA3255 amplifiers. Output: +15 V / –15 V, up to 0.133 A per side. Maximum output capacitance: ≤ 47 µF per side (according to the datasheet). 5.1 Power Filtering Input (48 V): RC variant (simpler, acceptable for the first revision): R = 1–2 Ω / 1–2 W C = 47–100 µF (for 63 V or higher) LC variant (preferred for improved noise immunity): L = 10–22 µH C = 47–100 µF The developer may implement LC if confident in choosing the inductance and its parameters. Output +15 V and –15 V (general filtering): Electrolytic capacitor 10–22 µF per side 100 nF (X7R) per side to GND Local decoupling for NE5532 (REQUIRED): For each NE5532 package: 100 nF between +15 V and GND 100 nF between –15 V and GND Place as close as possible to the op-amp power pins (short traces). Additional local filtering for power lines: For each NE5532, decouple from the ±15 V main rails: Either 4.7–10 Ω resistor in series with +15 V and –15 V, Or ferrite bead in each rail. After this component, place local capacitors (100 nF + 1–4.7 µF) to ground. 6. INPUT TRACT: INPUTS, BUFFER, ADJUSTMENT 6.1 Unbalanced Input (RCA / Jack / Linear) The main mode is the unbalanced linear input, for example, RCA. Input tract structure: RF-filter and protection: Signal → series resistor Rin_series = 100–220 Ω After resistor — capacitor Cin_RF = 470–1000 pF to GND This forms a low-level RF filter and reduces high-frequency noise. DC-block (low-pass HP-filter): Capacitor Cin_DC = 2.2–4.7 µF film in series Resistor to ground Rin_to_GND = 47–100 kΩ Cut-off frequency — negligible in the audio range but removes DC. Input buffer / preamplifier (NE5532, U5): Non-inverting configuration. Input — after DC-block. Gain: adjustable, e.g., Rg_fixed = 10 kΩ (to GND through trimmer) Rf = 10–20 kΩ + footprint for trimmer (e.g., 20 kΩ) The gain should be in the range of 0 dB to +10…+12 dB. Possible configuration: Rg = 10 kΩ fixed Rf = 10 kΩ + 10 kΩ trimmer in series. This allows adjusting the overall level of the crossover according to the source and amplifier levels. Buffer output: A low-impedance output (after NE5532) This signal is simultaneously fed to the inputs of all filters: LP650 (LF) HP650 → LP2500 (MF) HP2500 (HF) 6.2 Balanced Input (XLR / TRS) — Optional, but laid out on the board The board should allow for a balanced input, even if it’s not used in the first revision. Implementation requirements: XLR/TRS connector (L, R, GND) or separate 3-pin header. Simple differential receiver on NE5532 (extra U6 package or use one channel of U5 if sufficient). Circuit: classic instrumentation amplifier or differential amplifier: Inputs: IN+ and IN– Output — single-ended signal of the same level (or slightly amplified), fed to DC-block and buffer (or directly to the buffer if integrated). Switching between balanced/unbalanced mode: Implement using jumpers / bridges or adapters: Either switch before the buffer, Or use two separate pads, one of which is unused. All balanced input grounds must be connected to the same AGND point as the unbalanced input to avoid ground loops. 7. LEVEL ADJUSTMENT OF BANDS (BEST METHOD) The level adjustment of each band (LOW, MID, HIGH) is required to match the sensitivity of the speakers and amplifiers. Recommended method: After each full filter (after LP650×2, MID-chain HP650×2 → LP2500×2, HP2500×2), install: A passive attenuator: Series: Rseries (0–10 kΩ, adjustable) Shunt: Rshunt to GND (10–22 kΩ, fixed or adjustable) For simplicity and reliability: Implementation on the board: For each band (LOW, MID, HIGH) provide: Pad for multi-turn trimmer 10–20 kΩ as a divider (between signal and ground) in the "level adjustment" configuration. If adjustment is not needed — install a fixed divider (two resistors) or simply use a jumper. It is preferable to use: For setup: multi-turn trimmers 10–20 kΩ, available on the top side of the board. Nominals for the initial configuration can be selected through measurements, but the PCB should have flexibility. This provides: Accurate balancing of band volumes without interfering with the filters; Flexibility for fine-tuning to the specific characteristics of the speakers. 8. INPUTS AND OUTPUTS OF THE CROSSOVER (FINAL) 8.1 Inputs 1× Unbalanced linear input (RCA or 3-pin header) 1× Balanced input (XLR/TRS or 3-pin header) — optional, but space must be provided on the board. Input impedance (unbalanced after RF-filter): 22–50 kΩ. The input tract must be implemented using shielded cables. 8.2 Outputs Outputs to amplifiers: Output Signal LOW OUT After LP650×2 (LF) MID OUT After HP650×2 → LP2500×2 (MF) HIGH OUT After HP2500×2 (HF) Each output: Series resistor 100–220 Ω (prevents possible oscillations and simplifies cable management). A nearby own AGND pad (ground output), so the signal pair SIG+GND runs together. Outputs should be compactly placed on 2-pin connectors (SIG+GND) or 3-pin (SIG+GND+reserve). 9. PCB DESIGN REQUIREMENTS 9.1 Board Number of layers: 2 layers Bottom layer: solid analog ground (AGND). 9.2 Component Placement Key principles: RC chains of each filter (R1, R2, C1, C2, Rf, Rg) should form a compact "island" around the corresponding op-amp. If elements are placed too far apart, the filter will not work correctly (calculated frequency and Q will shift). Feedback tracks (Rf and Rg) should be as short and direct as possible. The AM4T-4815DZ module should be placed: Far from the input buffer, Far from the first filter stages, If necessary, make a "cutout" in the ground under it to limit noise propagation. Place the input connector, RF-filter, and buffer on one side of the board, and the output connectors on the opposite side. 9.3 Ground The entire audio circuit uses one analog ground: AGND. Connect AGND to the power ground (48 V and amplifiers) at one point ("star"). The star should be implemented as: One point/pad where: The ground of the input, The ground of the filters, The ground of the outputs, The ground of the DC/DC. Avoid long narrow "ground" jumpers — use wide polygons with a single connection point. 9.4 Placement of Output Connectors Group LOW/MID/HIGH compactly. Each should have its own GND pad nearby. Route the SIG+GND pairs as signal pairs, avoiding large loops. 10. ADDITIONAL ELEMENTS: PROTECTION, TEST POINTS 10.1 Test Points (TP) Be sure to provide test points (pads): TP_IN — crossover input (after buffer) TP_LOW — LF filter output TP_MID — MF filter output TP_HIGH — HF filter output TP_+15, TP_–15, TP_GND — power control This greatly simplifies debugging with an oscilloscope. 10.2 Power Protection On the 48 V input — it is advisable to provide: Diode/scheme for reverse polarity protection (if possible), TVS diode or varistor for voltage spikes (optional). 10.3 Possible Stability Correction Pads for small capacitors (10–47 pF) in parallel with Rf in buffers and, if necessary, in some stages — in case of stability issues (this can be not installed in the first revision, but footprints should be provided). 11. BILL OF MATERIALS (BOM) Operational Amplifiers: NE5532 — 4 pcs (filters) NE5532 — 1–2 pcs (input buffer and balanced input) Total: 5–6 NE5532 packages. Resistors (1%, metal-film): 24.9 kΩ — 8 pcs 6.34 kΩ — 8 pcs 10 kΩ — ≥ 12 pcs (feedback, buffers, etc.) 5.9 kΩ — 8 pcs 22 kΩ — 1–2 pcs (input, auxiliary chains) 47–100 kΩ — several pcs (DC-block, input) 100 kΩ — 1 pc (if needed) 100–220 Ω — 4–6 pcs (outputs, RF, protection) 4.7–10 Ω — 2 pcs for each op-amp or group of op-amps (power filtering) — quantity to be clarified during routing. Trimmer Resistors: 10–20 kΩ multi-turn — one for each band (LOW, MID, HIGH) 10–20 kΩ — 1–2 pcs for the input buffer (overall gain adjustment). Capacitors: 10 nF film — 16 pcs (RC filters) 2.2–4.7 µF film — 1–2 pcs (input DC-block) 10–22 µF electrolytic — 2–4 pcs (DC/DC outputs) 1–4.7 µF (X7R / tantalum) — 1 pc for local power filtering (optional). 100 nF ceramic X7R — 10–20 pcs (local decoupling for each op-amp) 470–1000 pF — 1–2 pcs (RF filter on the input) 10–47 pF — optional for stability correction (Rf). Power Supply: AM4T-4815DZ — 1 pc Inductor 10–22 µH (if LC filter) — 1 pc R 1–2 Ω / 1–2 W — 1 pc (if RC filter). Connectors: Input (RCA + 3-pin for internal input) Balanced (XLR/TRS or 3-pin header) Outputs LOW/MID/HIGH — 2-pin/3-pin connectors. 12. TESTING RECOMMENDATIONS 12.1 First Power-up Apply ±15 V without installed op-amps. Check with a multimeter: +15 V –15 V No short circuits in the power supply. Install the op-amps (NE5532). Apply a sine wave of 100–200 mV RMS (signal generator). Check with an oscilloscope at TP: LP650 — should pass LF and roll off everything above 650 Hz. HP650 — should roll off LF, pass everything above 650 Hz. LP2500 — should roll off above 2500 Hz. **HP250 0** — should pass everything above 2500 Hz. 12.2 Phase Check The Linkwitz–Riley 4th order should give a flat frequency response when summed at the crossover points. This can be verified with REW/Arta. 12.3 Noise Check If there is noticeable "shshsh" or whistling: Check: Grounding layout (star) Placement and filtering of AM4T-4815DZ Presence and proper installation of all 100 nF and local filters. 13. FINAL RECOMMENDATIONS FOR BEGINNERS Do not rush, build the circuit step by step: input → buffer → one filter → test, then continue. Check component values at least twice before soldering. Filters should be routed as compact "islands" around the op-amp, do not stretch R and C across the board. Always remember the rule: "The feedback trace should be as short as physically possible." Before ordering the PCB, make a "paper prototype": print at 1:1, cut it out, place real components to check everything fits.


  • Brainstorm a new project with AI [Example]

    Brainstorm a new project with AI [Example]

    PLCC-52 Interposer SID Board with Integrated Audio Mixing and Star Ground


  • Patient Ivory Interocitor

    Patient Ivory Interocitor

    Introducing our innovative modular, AI-powered DIY laptop carrier board project! This design focuses on a step-by-step approach, starting with a solid architectural scaffold that lays the groundwork for a high-performance system. The project is built around a hierarchical schematic structure including: • A Top Sheet outlining the system overview and power tree • SoM Connectors organized into three 100-pin assemblies (two CM4/5-compatible and one dedicated to high-speed operation) • Dedicated Power/PD management • An M.2 A+E interface for the Coral TPU (PCIe x1 from PORT0) • An M.2 M-key interface for an NVMe SSD (PCIe x2 from PORT1) • Comprehensive USB & Hub configurations • A microSD integration module • Supervisory and Reset controls The design aligns with cost-effective 4-layer board stackup practices (JLCPCB friendly) while following best high-speed design guidelines for USB/PCIe integrity. The integrated silkscreen placeholders feature custom sci-fi fonts for a unique, personal branding touch. Key routing notes include precise PCIe lane mappings based on the Orange Pi CM5 manual, ensuring clean ground return paths, effective decoupling, and proper AC-coupling placement. With paired USB hubs optimized for minimal depth and latency and robust power sequencing strategies, this project is poised to evolve into a high-speed, scalable prototype. #DIYElectronics #ModularDesign #PCBDesign #EmbeddedSystems #PCIe #USBDesign #OrangePiCM5 #TechInnovation #HighSpeedElectronics

    &

    +2


  • Fast Silver Flubber

    Fast Silver Flubber

    Create a schematic diagram of an electric fence controller using the NE556 dual timer IC. The circuit must include all components with clear electronic symbols (resistors, capacitors, transistors, diode, relay) connected by lines as in a real circuit diagram. Specifications: 1. Power supply: - Vcc = +12V connected to pin 14 of the NE556. - Pin 1 of the NE556 to ground. 2. Timer A (active 10 seconds): - Pin 2 (Trigger A) receives a pulse from transistor Q2 (contact detector). - Pin 6 (Threshold A) connected to Pin 7 (Discharge A). - R1 = 1 MΩ between Pin 7 and +12V. - C1 = 10 µF between Pin 6 and ground. - Pin 3 (Out A) goes through a 4.7 kΩ resistor to the base of Q1 (BC547 NPN transistor). - Pin 3 also connected via a 100 nF capacitor to Pin 13 (Trigger B of Timer B). 3. Timer B (rest 10 seconds): - Pin 9 (Discharge B) and Pin 8 (Threshold B) connected together. - R2 = 1 MΩ between Pin 9 and +12V. - C2 = 10 µF between Pin 8 and ground. - Pin 12 (Out B) can be optionally used to block retrigger of Timer A. 4. Relay driver stage: - Q1 = BC547 NPN transistor. - Base connected through 4.7 kΩ resistor to Pin 3 (Out A). - Emitter to ground. - Collector connected to one side of the relay coil. - Other side of relay coil connected to +12V. - A diode 1N4007 placed in parallel with the relay coil (cathode to +12V, anode to collector of Q1). - Relay contacts switch the +12V supply to the electric fence energizer. 5. Contact detector: - Shunt resistor ≈0.1 Ω placed in series with the fence output. - Q2 = BC547 NPN transistor, base connected to the shunt, emitter to ground, collector to Pin 2 (Trigger A). - When current flows through the shunt, Q2 provides a trigger pulse to Timer A. Please draw the schematic in a standard style with components connected by straight lines, not in block diagrams. Show clear pin numbers of the NE556 and all external components.


  • ESPRSSO32 Smart Scale AI Auto Layout [Example]

    ESPRSSO32 Smart Scale AI Auto Layout [Example]

    dc-dc converter input voltage is from 6 to 20 and output voltage is 12v 15 amper and seprated ground using firrite transformer and h-bridge topology with full configration for the circuit and the snipper circuit if there is one


  • Secret Crimson Hoverboard

    Secret Crimson Hoverboard

    Circuit Overview The circuit you're describing is a digital counter that uses an LDR (Light-Dependent Resistor) and a transistor to detect wheel rotations. The counter's output is then displayed on a seven-segment LED display. Here's a breakdown of the components and their roles: 1. Wheel Rotation Detection (LDR and Transistor) * LDR: The LDR acts as a sensor to detect changes in light intensity. You can mount it on the wheel' or near it, with a reflective or non-reflective surface attached to the wheel. As the wheel rotates, the LDR will be exposed to alternating light and dark conditions, causing its resistance to change. * Transistor: The transistor (e.g., a 2N2222 NPN BJT) is used as a switch or amplifier. The changing resistance of the LDR is used to control the base current of the transistor. When the LDR's resistance drops (more light), the transistor turns on, and when the resistance increases (less light), the transistor turns off. This converts the analog change in light into a digital ON/OFF signal (a pulse). 2. Counter (7490) * 7490 IC: This is a decade counter, meaning it can count from 0 to 9. The output of the transistor (the pulses) is fed into the clock input of the 7490. Each pulse represents one rotation of the wheel, and the 7490 increments its count accordingly. The 7490 has four outputs (Q0, Q1, Q2, Q3) that represent the BCD (Binary-Coded Decimal) equivalent of the count. 3. BCD to Seven-Segment Decoder (7446) * 7446 IC: The 7446 is a BCD-to-seven-segment decoder/driver. Its job is to take the 4-bit BCD output from the 7490 and convert it into a signal that can drive a seven-segment LED display. It has seven outputs (a, b, c, d, e, f, g), each corresponding to a segment of the LED display. 4. Seven-Segment LED Display * Seven-Segment Display: This display is used to show the count. The 7446's outputs are connected to the corresponding segments of the display. 5. Power Supply and Other Components * Power Supply: A regulated DC power supply (e.g., 5V) is needed to power all the ICs and components. * Resistors: Resistors are used for current limiting (e.g., for the LDR and the LED display) and biasing the transistor. * Capacitors: A capacitor might be used for debouncing the signal from the transistor to prevent multiple counts for a single rotation. Conceptual Connections Here is a step-by-step breakdown of how the components would be connected: * LDR and Transistor: * The LDR and a current-limiting resistor are connected in series across the power supply. * The junction between the LDR and the resistor is connected to the base of the NPN transistor. * The emitter of the transistor is connected to ground. * The collector of the transistor, with a pull-up resistor, becomes the output for the pulse signal. * Transistor to 7490: * The output from the transistor's collector is connected to the clock input of the 7490 IC. * The 7490's reset pins (MR and MS) should be connected to ground for normal counting operation. * 7490 to 7446: * The BCD outputs of the 7490 (Q0, Q1, Q2, Q3) are connected to the BCD inputs of the 7446 (A, B, C, D). * 7446 to Seven-Segment Display: * The outputs of the 7446 (a, b, c, d, e, f, g) are connected to the corresponding segments of the seven-segment display. * Crucially, you need to use current-limiting resistors (e.g., 330Ω) in series with each segment to protect the LEDs from high current. * The common terminal of the seven-segment display is connected to the power supply (for a common anode display) or ground (for a common cathode display). This setup creates a chain reaction: wheel rotation changes light, which changes LDR resistance, which turns the transistor on/off, generating a pulse. This pulse increments the 7490, and the 7490's output is decoded by the 7446, which then displays the count on the seven-segment LED.


  • Empirical Amaranth Universal Remote

    Empirical Amaranth Universal Remote

    Elementos necesarios en Proteus 8 Busca estos componentes en la biblioteca (modo "Pick Devices"): Conector J1772 – usa un conector genérico de 4 pines (como HEADER 4 o un DB9 si necesitas algo similar). Resistencias: R1: 150 Ω R2: 330 Ω R3: 150 Ω R4: 2.7 Ω Interruptor SPST o jumper simulando "Punto A", "Punto B" y "GND". Fuente de alimentación de 5V para simular BAT1. Ground (GND) para las conexiones a tierra. Batería (Battery) de 5V (puede ser una batería o una carga equivalente en Proteus). Indicador LED (opcional) si quieres ver visualmente la salida de carga o conexión. 🛠️ Pasos para construir el circuito Sección del conector (lado izquierdo) Coloca un conector de 4 pines y nómbralo "J1772". Conecta el primer pin a una fuente de 5V opcional (simulando señal de control). Añade las resistencias R1 (150Ω) y R2 (330Ω) en serie, con un nodo medio hacia “Punto A”. Conecta el otro lado de R1 a "Punto B". Conecta el otro extremo de R2 a tierra. Agrega interruptores SPST para "Punto A", "Punto B" y "GND" para simular las uniones cuando se conectan al cargador. Sección de carga (lado derecho) Coloca las resistencias R3 (150Ω) y R4 (2.7Ω) tal como en la imagen, entre el conector y la batería. Coloca una batería (BAT1) de 5V, y conecta el negativo a tierra. Asegúrate de cerrar correctamente los interruptores (simulando conexión). 🔄 Simulación Usa "Interactive Simulation" en Proteus. Agrega etiquetas como "PUNTO A", "PUNTO B", etc., si deseas facilitar el seguimiento. Observa cómo el voltaje pasa a través de las resistencias y carga la batería. Puedes usar voltímetros o osciloscopios virtuales para observar los cambios de voltaje y corriente. ✅ Consejos finales Si no encuentras la resistencia exacta de 2.7Ω, puedes colocar una personalizada. Puedes usar Virtual Terminal si quieres simular señales de comunicación en el conector. El conmutador central (como se muestra en la línea de puntos) puede implementarse con switches DPDT o nodos que conectes manualmente en la simulación.


  • Decisive White Flux Capacitor

    Decisive White Flux Capacitor

    This project involves designing a complete schematic for a robotic arm controller based on the ESP32-C3 microcontroller, specifically using the ESP32-C3-MINI-1-N4 module. The design features a dual power input system and comprehensive power management, motor control, I/O interfaces, and status indicators—all implemented on a 2-layer PCB. Key Specifications: Microcontroller: • ESP32-C3-MINI-1-N4 module operating at 3.3V. • Integrated USB programming connections with reset and boot mode buttons. Power System: • Dual power inputs with automatic source selection: USB-C port (5V input) and barrel jack (6-12V input). • Power management using LM74610 smart diode controllers for power source OR-ing. • AMS1117-3.3 voltage regulator to deliver a stable 3.3V supply to the microcontroller. • Filter capacitors (10μF electrolytic and 100nF ceramic) at the input and output of the regulators. • Protection features including USBLC6-2SC6 for USB ESD protection and TVS diodes for barrel jack overvoltage protection. Motor Control: • Incorporates an Omron G5LE relay with a PC817 optocoupler and BC547 transistor driver. • Provides dedicated header pins for servo motors with PWM outputs. • Flyback diode protection implemented for relay safety. I/O Connections: • Header pins exposing ESP32-C3 GPIOs: Digital I/O (IO0-IO10, IO18, IO19) and serial communication lines (TXD0, RXD0), plus an enable pin. • Each I/O pin includes appropriate 10kΩ pull-up/pull-down resistors to ensure reliable performance. Status Indicators: • A power status LED with a current-limiting resistor. • A user-controllable LED connected to one of the GPIO pins. PCB Layout Requirements: • 2-layer PCB design with separate ground planes for digital and power sections. • Placement of decoupling capacitors close to power pins to reduce noise. • Adequate trace width for power lines to ensure efficient current flow. • Inclusion of mounting holes at the board corners for secure installation. • All components are properly labeled with correct values for resistors, capacitors, and other passive elements, following standard design practices for noise reduction, stability, and reliability. #RoboticArmController #ESP32C3 #SchematicDesign #PCBDesign #ElectronicsDesign #PowerManagement #MotorControl #EmbeddedSystems #IoT


  • Tarjeta de pruebas multiples resistencias

    Tarjeta de pruebas multiples resistencias

    A board to test different resistors in an RC circuit. Singal input, goes into resistors, manually select which resistor goes out to one pin of the external capacitor, and a path to capacitor ground. An general purpose button with exposed pins is included

    &


  • Ground2

    Ground2

    A common return path for electric current. Commonly known as ground.


  • Wittering Amaranth Esper Photo Analyser

    Wittering Amaranth Esper Photo Analyser

    ATMEGA328-PU (U1) Setup Power Supply Connections: Connect U1:VCC to U2:5V@1 (5V power supply). Connect U1:GND to U2:GND@1 (Ground). Connect U1:AVCC to U2:5V@2 (Analog Power Supply for better ADC performance). Multiple GND pins (U2:GND@1, U2:GND@2, U2:GND@3, U2:GND@4) should all be connected to a common ground plane for stability. Serial Communication for Debugging: Connect U1:PD0 (RX) to U6:TXD. Connect U1:PD1 (TX) to U6:RXD. These connections enable serial communication between the microcontroller (ATmega328) and the USB-Serial adapter (CH340N) for programming and debugging. Sensor Data Acquisition: Given the components, the MLX90614ESF-ACC-000-SP (U4) is an infrared temperature sensor that could be used for vital detection. It uses an I 2 2 C interface. Connect U1:PC4 (SDA) to U4:PWM_SDA. Connect U1:PC5 (SCL) to U4:SCL_Vz. This allows the ATmega328 to communicate with the MLX90614ESF infrared temperature sensor. Additional Considerations: An analog-to-digital converter (ADC) or a specialized RF module designed for UWB radar applications would be necessary to capture and process radar signals for detecting human vitals through walls. The MAX270CWP+ (U3) could be used for audio signal processing but may not directly apply to UWB radar signal processing. Power Supply to Other Components Connect U6:VCC to U2:5V@1. Connect U4:VDD to U2:5V@2. Ensure all components' ground pins are connected to the common ground plane (U2:GND@1, GND@2, GND@3, GND@4)


  • Stereo WiFi Camera Reference Design

    Stereo WiFi Camera Reference Design

    This is a stereo WiFi camera reference design using dual ESP32-CAM modules for edge computing. The design includes connections for power, ground, and core communication features; UART for control & data transfer, and BOOT pins for mode selection. #WiFi #MCU #stereo #ReferenceDesign #project #ESP32 #camera #referenceDesign #edgeComputing #espressif #template #reference-design


  • Skinny Sapphire Sonic Screwdriver

    Skinny Sapphire Sonic Screwdriver

    Here’s a detailed project description prompt that you can use to generate the circuit: --- ### Project Description for Circuit Generation **Project Title**: Vehicle-to-Vehicle (V2V) Communication System for Preventing Dangerous Overtaking Maneuvers **Objective**: The prime objective of this project is to develop and implement a Vehicle-to-Vehicle (V2V) communication system that enhances road safety by preventing dangerous overtaking maneuvers. This system will provide real-time alerts to drivers about the presence and intentions of nearby vehicles, reducing the risk of collisions and improving overall traffic flow on highways. **Components**: 1. **Microcontroller (e.g., Arduino)** 2. **GPS Module (NEO-6M)** 3. **LoRa Module (SX1272)** 4. **Audio/Visual Alert Systems (e.g., Buzzer, LEDs)** 5. **SD Card Module** 6. **LM7805 Voltage Regulator** 7. **9V Battery** **Connections**: 1. **Power Supply**: - **9V Battery**: - Positive to **LM7805 Voltage Regulator Input** - Negative to **Common Ground** - **LM7805 Voltage Regulator**: - Output to **5V Rail (VCC)** - Ground to **Common Ground** 2. **Microcontroller (e.g., Arduino)**: - **Power**: - VCC to **5V Rail (VCC)** - GND to **Common Ground** 3. **GPS Module (NEO-6M)**: - **Power**: - VCC to **5V Rail (VCC)** - GND to **Common Ground** - **Communication**: - TX to **RX (Digital Pin) of Microcontroller** - RX to **TX (Digital Pin) of Microcontroller** (if needed) 4. **LoRa Module (SX1272)**: - **Power**: - VCC to **3.3V or 5V (based on module specification)** - GND to **Common Ground** - **SPI Communication**: - MOSI to **MOSI (Digital Pin) of Microcontroller** - MISO to **MISO (Digital Pin) of Microcontroller** - SCK to **SCK (Digital Pin) of Microcontroller** - NSS to **CS (Digital Pin) of Microcontroller** 5. **Audio/Visual Alert System (Buzzer, LEDs)**: - **Buzzer**: - Positive to **Digital Output Pin** of Microcontroller through a resistor - Negative to **Common Ground** - **LEDs**: - Anode (Positive) to **Digital Output Pin** of Microcontroller through a resistor - Cathode (Negative) to **Common Ground** 6. **SD Card Module**: - **Power**: - VCC to **3.3V or 5V (based on module specification)** - GND to **Common Ground** - **SPI Communication**: - MOSI to **MOSI (Digital Pin) of Microcontroller** - MISO to **MISO (Digital Pin) of Microcontroller** - SCK to **SCK (Digital Pin) of Microcontroller** - CS to **Digital Pin of Microcontroller** **System Functionality**: - **System Initialization and Configuration**: Ensure the microcontroller and communication modules are correctly initialized and configured for optimal performance. - **GPS Signal Acquisition and Data Parsing**: Accurately acquire and parse GPS data to determine the vehicle's current location and speed. - **Vehicle Position and Speed Calculation**: Calculate precise vehicle position and speed in real-time to provide accurate data for communication. - **V2V Communication Establishment**: Establish a reliable communication link between vehicles using the LoRa module to transmit and receive data. - **Overtaking Intention Detection and Signal Transmission**: Detect overtaking intentions and transmit this information to nearby vehicles to alert them of potential hazards. - **Signal Reception and Processing by Nearby Vehicles**: Ensure nearby vehicles can receive and process overtaking signals to determine the position and speed of the overtaking vehicle. - **Driver Alert Generation**: Generate audio and visual alerts to inform drivers of the presence and intentions of nearby vehicles, especially during overtaking. - **Continuous Monitoring and Data Logging**: Continuously monitor the system's performance and log relevant data for analysis and future improvements.


  • ROBOT DRIVER

    ROBOT DRIVER

    Motor Driver Contains The following blocks: - Tachometer - Speed Compensator (with Virtual Ground) - Directions control - Arduino source - ESP 32 Cam


  • Control_Unit

    Control_Unit

    Rocket's igniter ground station control unit

    &


  • groundless-hole-test

    groundless-hole-test

    Welcome to your new project. Imagine what you can build here.

    dacre


  • Grounding test

    Grounding test

    Welcome to your new project. Imagine what you can build here.


  • Zoophagous Beige Matter Compiler

    Zoophagous Beige Matter Compiler

    - ESP32 DevKitC V4 (microcontroller) - 2x BME280 sensors (temperature, humidity, pressure) - 8ch relay board with 12VDC relays (NO/NC SPDT) - 12VDC power supply - USB connectivity - Various components (resistors, caps, opto couplers, op-amps, motor drivers, multiplexers) - 2x SPDT relay boards (for fan fail-safe) - 4x 2ch bidirectional level controllers (3.3V to 5V) - ESP32 GPIO 21 (SCL) to BME280's SCL - ESP32 GPIO 22 (SDA) to BME280's SDA - ESP32 GPIO 5 (digital output) to 8ch relay board input - ESP32 GPIO 25 (PWM output) -> Fan PWM (0-255 value) - ESP32 GPIO 26 (PWM output) -> Light PWM (0-255 value) - ESP32 GPIO 34 (analog input) -> Tachometer input (0-4095 value, 12-bit ADC) - Add a 5V voltage regulator (e.g., 78L05) to power the ESP32 and other 5V components - Add a 3.3V voltage regulator (e.g., 78L03) to power the BME280 sensors and other 3.3V components - Include decoupling capacitors (e.g., 10uF and 100nF) to filter the power supply lines - Ensure proper grounding and shielding to minimize noise and interference -- Power supply: - VCC=12VD Available, to be used for LM358P - 5V voltage regulator (78L05) - VCC=5V, GND=0V - 3.3V voltage regulator (78L03) - VCC=3.3V, GND=0V - 3.3V voltage regulator (78L03) - VCC=3.3V, GND=0V - Fan PWM boost: - Input (3.3V PWM): 0-3.3V, frequency=20kHz - Output (5V PWM): 0-5V, frequency=20kHz - LM358P op-amp (unity gain buffer) - VCC=5V, GND=0V - R1=1kΩ, R2=1kΩ, R3=1kΩ, R4=1kΩ - C1=10uF (50V), D1=1N4007 - 0-10V signal conditioning: - Input (3.3V PWM): 0-3.3V, frequency=13kHz - Output (0-10V): 0-10V, frequency=13kHz - LM358P op-amp (non-inverting amplifier) - VCC=5V, GND=0V - R5=2kΩ, R6=1kΩ, R7=2kΩ, R8=1kΩ, R9=1kΩ, R10=2kΩ - C2=10uF (50V), R11=10kΩ (1%) ------------------------------------ Fan PWM Boost (3.3V to 5V): 1. ESP32 GPIO 25 (PWM output) -> R1 (1kΩ) -> VCC (3.3V) 2. ESP32 GPIO 25 (PWM output) -> R2 (1kΩ) -> Vin (LM358P) 3. LM358P (Voltage Follower): - VCC (5