Architectural Lavender Translation Collar
Architectural Lavender Translation Collar – ESP32‑S3 Wi‑Fi + LoRa, USB‑C, Li‑ion, low‑power design Overview Experience a cutting-edge IoT solution with this low‑power board built around the ESP32‑S3‑MINI‑1‑N8. Designed for seamless Wi‑Fi (2.4 GHz), BLE, and LoRa (868 MHz) connectivity, this board integrates ENS161 and ENS210 sensors over I2C alongside an RFM95W‑868 LoRa radio on SPI. It is powered via a 3.7 V Li‑ion cell with USB‑C charging up to 500 mA, complete with full battery protection, a robust 3.3 V rail tailored for Wi‑Fi burst currents, and per‑peripheral power gating to enhance energy efficiency. Core Features • MCU: ESP32‑S3‑MINI‑1‑N8 equipped with an onboard PCB antenna for 2.4 GHz Wi‑Fi/BLE, ensuring optimal wireless performance. • Sensors: Integrated ENS161 and ENS210 sensors utilize a shared I2C bus with controllable 4.7 kΩ pull‑ups for streamlined communication. • LoRa Radio: The RFM95W‑868 module, connected via SPI, enables long‑range communication at 868 MHz. Power & USB‑C Connectivity • Battery: A reliable 3.7 V 1200 mAh Li‑ion battery connected via a right‑angle JST‑PH 2‑pin connector features built‑in battery protection. • Charging: The USB‑C receptacle, with CC resistors and TVS protection on D+/D− along with series resistors, supports fast, safe charging with a current limit of 500 mA. • Regulation: A dedicated 3.3 V regulator capable of handling Wi‑Fi burst currents coupled with bulk and high‑frequency decoupling ensures stable operation, supported by status LEDs indicating power and charge states. Low‑Power Control • Peripheral Management: Load switches allow selective power‑gating of the ENS161, ENS210, and RFM95W modules, controlled directly by ESP32‑S3 GPIOs. • Energy Efficiency: Controllable I2C pull‑ups minimize idle current, vital for prolonged battery life in IoT applications. RF and Antenna Integration • 2.4 GHz: Utilizes the integrated PCB antenna on the ESP32‑S3 with proper ground/metal keep‑out zones for optimal signal integrity. • 868 MHz: Features a controlled‑impedance feed from the RFM95W to a PI matching network (C‑L‑C pads) with flexible antenna options—selectable via SMA connector, chip antenna, or PCB trace—and includes RF ESD protection. Connectivity & Debug Features • USB‑C Interface: Provides secure data connectivity with integrated safeguards and proper terminations. • Debugging: A comprehensive programming/debug header exposes EN, BOOT, and UART lines, with test points on key rails and buses (3V3, VBAT, SCK, MOSI, MISO, SDA, SCL, RESET/EN, GND) to simplify development and troubleshooting. Design Verification • Rigorous ERC/DRC and decoupling checks ensure adherence to component ratings and optimal signal routing. • Maintain RF keep‑outs and impedance‑controlled traces for both 2.4 GHz and 868 MHz paths, securing reliable performance even during high‑intensity operations. #IoT #ESP32S3 #LoRa #LowPowerDesign #USB-C #WirelessConnectivity #BatteryPowered #RFDesign
neilc1964