Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
To design a timer circuit using the PIC16F887 that includes reset, stop, and start buttons, you will need to consider both the hardware connections and the software programming for this microcontroller. Since we're focusing on the hardware design here, I will outline how to connect the buttons and suggest a basic approach for the software.
Assumptions:
Reset, Stop, and Start Buttons: Normally open pushbuttons are used.
I/O Pins: Using digital I/O pins for button inputs. Pins can be configured as input with internal pull-up resistors enabled in software to simplify circuitry.
External Components: Minimal external components assumption (debouncing for buttons handled in software).
Hardware Connections:Power Connections:
Connect VDD pins to a +5V power supply.
Connect VDD:P11 and VDD:P32 to +5V.
Connect VSS pins to ground.
Connect VSS:P12 and VSS:P31 to GND.
Button Connections:
Reset Button (Assigned to MCLR for hardware reset feature):
Connect one side of the Reset button to RE3/MCLR/Vpp:P1.
Connect the other side to +5V.
Note: This pin is an active-low reset, so pulling it to VDD disables the reset. Pressing the button applies +5V directly, which normally wouldn't trigger a reset unless an external pull-down resistor is used to keep the pin normally at GND. Alternatively, this button could be connected to GND, and an external pull-up resistor used if software-controlled reset is not desired.
Stop Button (Using a general-purpose I/O):
Connect one side of the Stop button to RD0:P19 (or another free digital I/O pin).
Connect the other side to GND.
Enable internal pull-up resistor for RD0 in software.
Start Button (Using a different general-purpose I/O to differentiate from stop):
Connect one side of the Start button to RD1:P20 (or another designated I/O pin).
Connect the other side to GND.
Enable internal pull-up resistor for RD1 in software.
Optional:
To use an LED or another indicator for timer status, connect the LED with a series resistor to a designated digital I/O pin and the other side to GND. Ensure the pin used is set as an output in your code.
Sample Connections Summary:
Connect VDD:P11 and VDD:P32 to +5V.
Connect VSS:P12 and VSS:P31 to GND.
Connect Reset button to RE3/MCLR/Vpp:P1 and the other side to +5V.
Connect Stop button to RD0:P19 and GND.
Connect Start button to RD1:P20 and GND.
Software Outline:
Initialize the PIC16F887 I/O pins for the buttons and any output indicators (e.g., LEDs).
Poll the input pins connected to the Start and Stop buttons in your main loop, debouncing each button in software.
Implement an interrupt service routine that increments a counter every timer tick when the timer is active. This will be your timer's base.
Control the timer with Start and Stop buttons: start the timer counting on a Start button press, and stop it on a Stop button press.
Reset Feature: Implement a feature that resets the counter to 0 on a Reset button press. This might be done with an external interrupt or polling, depending on how you've set up the Reset button. If connected directly to MCLR, the reset functionality will be inherent but will restart the entire program, not just the counter.
Remember, the bulk of the timer functionality—such as counting time, debouncing button inputs, and responding to button presses—will be managed in the software you program into the PIC16F887. Ensure your code is robustly designed to handle these tasks efficiently.
Lo siento, pero necesito más información para responder a tu pregunta. ¿Podrías proporcionar más detalles sobre el PIC al que te refieres? Los PIC son una familia de microcontroladores fabricados por Microchip Technology. Se utilizan en una amplia variedad de aplicaciones debido a su facilidad de programación y su capacidad para operar en condiciones de baja potencia. Sin embargo, la funcionalidad específica de un PIC puede variar dependiendo del modelo específico.
Para conectar un LED rojo al pin RE1/AN6 del PIC16F887-I/P:
Coloca el LED rojo en la placa. Considera que los LED tienen polaridad, por lo que deberás conectar el ánodo al voltaje de la fuente y el cátodo (lado más corto) al pin RE1 del microcontrolador.
Inserta una resistencia entre el ánodo del LED y el voltaje de la fuente. El valor exacto de la resistencia depende del LED que estés usando, pero frecuentemente es alrededor de 220Ω para LED rojos.
Posteriormente, podrás controlar el estado del LED (encendido/apagado) configurando el pin RE1 como salida y escribiendo en él un valor alto (para encender el LED) o bajo (para apagarlo) usando el código de tu microcontrolador.
Por último, recordar verificar las especificaciones técnicas del LED y del microcontrolador PIC16F887-I/P para evitar cualquier tipo de sobreintensidad que pueda dañar el LED o el propio microcontrolador.
To connect a red LED to the RE1/AN6 pin on the PIC16F887-I/P microcontroller, you can follow these steps:
Determine the appropriate resistor value: LEDs must be used with a current limiting resistor to prevent them from drawing too much current and becoming damaged. This value can typically be calculated using Ohm's law, V=IR, where V is the voltage drop across the resistor, I is the desired current through the LED, and R is the resistance. For a red LED, I is typically around 20 mA or 0.02 A. Assuming a supply voltage of 5 V and a voltage drop of 2 V across the LED, the voltage drop across the resistor would be 3 V. Plugging into Ohm's law gives R = V / I = 3 V / 0.02 A = 150 ohms.
Connect the LED and resistor in series: The anode (longer lead) of the LED should be connected to one end of the resistor, and the other end of the resistor should be connected to the power supply. The cathode (shorter lead) of the LED should be connected to the RE1/AN6 pin on the microcontroller.
Program the microcontroller: You'll need to configure the RE1/AN6 pin as an output and then write high or low values to it to turn the LED on and off, respectively. This will need to be done in your microcontroller's programming environment using the appropriate language and syntax.
Please note that this is a general guideline and the actual implementation might vary depending on the specific components and circuit design. Always refer to the datasheet of the components you are using for detailed information.
Here is a simple schematic diagram of the connection:
VDD
|
[R]
|
[A]---[K]--- RE1/AN6 (PIC16F887-I/P)
LED
VDD: Power supply (5V)
R: Resistor (150 Ohms)
A: Anode of the LED
K: Cathode of the LED
RE1/AN6: Pin on the PIC16F887-I/P microcontroller
Please note, you need to consider the current sourcing capability of the PIC16F887-I/P microcontroller's pin and it's maximum total current sourcing capability. It's always a good idea to verify these values from the datasheet.
Para utilizar los pines como entradas y salidas en el microcontrolador PIC16F887-I/P necesitarás declararlos en tu código, usualmente utilizando un lenguaje como C o ensamblador. La especificidad de las instrucciones para hacer esto dependerá del compilador o entorno de programación que estás utilizando.
En términos generales, puedes definir los pines como entrada (READ) o salida (WRITE) configurando los registros de dirección relevantes en tu código. En PIC16F887-I/P, cada puerto tiene un registro TRIS asociado (TRISA - TRISE) que define la dirección de los pines.
Por ejemplo, puedes configurar los pines como sigue:
Para configurar el pin RE1/AN6 como salida: debe especificar esto en el registro TRISE (TRIS E), que maneja los pines del Puerto E. En el caso de RE1, debes establecer el segundo bit de TRISE en 0 (porque los bits en los registros TRIS configurados en 0 se comportan como salidas).
Para configurar RD0 como entrada: debes especificar esto en el registro TRISD (TRIS D), que maneja los pines del puerto D. En el caso de RD0, debes establecer el primer bit de TRISD en 1 (porque los bits en los registros TRIS configurados en 1 se comportan como entradas).
Por tanto, asegúrate de tener un buen manejo de la programación del microcontrolador para implementar la configuración deseada de los pines. Recuerda que también necesitarás un compilador y una herramienta de carga para programar el microcontrolador con tu código.
La función de la entrada o salida depende de su aplicación y código implementado.
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reach me at any time by tagging me on comments or in the chat with my handle, @copilot.
1y
Someone is typing...
Passive Components
Resistor Power Rating
Beta
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
pailov
antonioseg
antonioseg