• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
@copilo

Relay
9mo
what is serial communication module?
1y
Someone is typing...
Design a timer circuit using PIC16F887, with reset, stop, and start buttons

@copilot Design a timer circuit using PIC16F887, with reset, stop, and start buttons
8mo
To design a timer circuit using the PIC16F887 that includes reset, stop, and start buttons, you will need to consider both the hardware connections and the software programming for this microcontroller. Since we're focusing on the hardware design here, I will outline how to connect the buttons and suggest a basic approach for the software.
Assumptions:

  • Reset, Stop, and Start Buttons: Normally open pushbuttons are used.
  • I/O Pins: Using digital I/O pins for button inputs. Pins can be configured as input with internal pull-up resistors enabled in software to simplify circuitry.
  • External Components: Minimal external components assumption (debouncing for buttons handled in software).
Hardware Connections: Power Connections:

  • Connect VDD pins to a +5V power supply.

    • Connect VDD:P11 and VDD:P32 to +5V.
  • Connect VSS pins to ground.

    • Connect VSS:P12 and VSS:P31 to GND.
Button Connections:

  1. Reset Button (Assigned to MCLR for hardware reset feature):

    • Connect one side of the Reset button to RE3/MCLR/Vpp:P1.
    • Connect the other side to +5V.
    • Note: This pin is an active-low reset, so pulling it to VDD disables the reset. Pressing the button applies +5V directly, which normally wouldn't trigger a reset unless an external pull-down resistor is used to keep the pin normally at GND. Alternatively, this button could be connected to GND, and an external pull-up resistor used if software-controlled reset is not desired.
  2. Stop Button (Using a general-purpose I/O):

    • Connect one side of the Stop button to RD0:P19 (or another free digital I/O pin).
    • Connect the other side to GND.
    • Enable internal pull-up resistor for RD0 in software.
  3. Start Button (Using a different general-purpose I/O to differentiate from stop):

    • Connect one side of the Start button to RD1:P20 (or another designated I/O pin).
    • Connect the other side to GND.
    • Enable internal pull-up resistor for RD1 in software.
Optional:

  • To use an LED or another indicator for timer status, connect the LED with a series resistor to a designated digital I/O pin and the other side to GND. Ensure the pin used is set as an output in your code.
Sample Connections Summary:

  • Connect VDD:P11 and VDD:P32 to +5V.
  • Connect VSS:P12 and VSS:P31 to GND.
  • Connect Reset button to RE3/MCLR/Vpp:P1 and the other side to +5V.
  • Connect Stop button to RD0:P19 and GND.
  • Connect Start button to RD1:P20 and GND.
Software Outline:

  1. Initialize the PIC16F887 I/O pins for the buttons and any output indicators (e.g., LEDs).
  2. Poll the input pins connected to the Start and Stop buttons in your main loop, debouncing each button in software.
  3. Implement an interrupt service routine that increments a counter every timer tick when the timer is active. This will be your timer's base.
  4. Control the timer with Start and Stop buttons: start the timer counting on a Start button press, and stop it on a Stop button press.
  5. Reset Feature: Implement a feature that resets the counter to 0 on a Reset button press. This might be done with an external interrupt or polling, depending on how you've set up the Reset button. If connected directly to MCLR, the reset functionality will be inherent but will restart the entire program, not just the counter.
Remember, the bulk of the timer functionality—such as counting time, debouncing button inputs, and responding to button presses—will be managed in the software you program into the PIC16F887. Ensure your code is robustly designed to handle these tasks efficiently.
8mo
Someone is typing...
3

PIC16F887-I/P

PIC16F887-I/P
Description

Created
March 25th 2022
Last updated by vasyl
2 years ago
1 Contributor(s)
vasyl

Controls

Properties

Part Type
Microcontroller
Manufacturer Name
Manufacturer Part Number
PIC16F887-I/P
Designator Prefix
U

Availability & Pricing

DPNStockQty 1
13.6K$3.18
40–461$2.977–$3.16
415–4.8K$3.16–$6.7175
140$3.4569
15.6K$3.18

Assets

Simulation

µs

Simulation Speed

component is not visible clearly
component is not visible clearly
9mo
CONECTAR FUENTE AL PIC 16F887
CONECTAR FUENTE AL PIC 16F887
11mo
what is serial communication module
what is serial communication module
1y
regulador de voltaje
regulador de voltaje
1y
para que sirve ete pic
@copilot para que sirve ete pic
1y
Lo siento, pero necesito más información para responder a tu pregunta. ¿Podrías proporcionar más detalles sobre el PIC al que te refieres? Los PIC son una familia de microcontroladores fabricados por Microchip Technology. Se utilizan en una amplia variedad de aplicaciones debido a su facilidad de programación y su capacidad para operar en condiciones de baja potencia. Sin embargo, la funcionalidad específica de un PIC puede variar dependiendo del modelo específico.
Source(s):
1y
@copilot para que sirve el pic16f877a
1y
I couldn't identify that component. Sorry!
1y
Para conectar un LED rojo al pin RE1/AN6 del PIC16F887-I/P:

  1. Coloca el LED rojo en la placa. Considera que los LED tienen polaridad, por lo que deberás conectar el ánodo al voltaje de la fuente y el cátodo (lado más corto) al pin RE1 del microcontrolador.
  2. Inserta una resistencia entre el ánodo del LED y el voltaje de la fuente. El valor exacto de la resistencia depende del LED que estés usando, pero frecuentemente es alrededor de 220Ω para LED rojos.
Posteriormente, podrás controlar el estado del LED (encendido/apagado) configurando el pin RE1 como salida y escribiendo en él un valor alto (para encender el LED) o bajo (para apagarlo) usando el código de tu microcontrolador.
Por último, recordar verificar las especificaciones técnicas del LED y del microcontrolador PIC16F887-I/P para evitar cualquier tipo de sobreintensidad que pueda dañar el LED o el propio microcontrolador.
Source(s):
1y
conectar led rojo al pin RE1
1y
connect led red in RE1
1y
To connect a red LED to the RE1/AN6 pin on the PIC16F887-I/P microcontroller, you can follow these steps:

  1. Determine the appropriate resistor value: LEDs must be used with a current limiting resistor to prevent them from drawing too much current and becoming damaged. This value can typically be calculated using Ohm's law, V=IR, where V is the voltage drop across the resistor, I is the desired current through the LED, and R is the resistance. For a red LED, I is typically around 20 mA or 0.02 A. Assuming a supply voltage of 5 V and a voltage drop of 2 V across the LED, the voltage drop across the resistor would be 3 V. Plugging into Ohm's law gives R = V / I = 3 V / 0.02 A = 150 ohms.
  2. Connect the LED and resistor in series: The anode (longer lead) of the LED should be connected to one end of the resistor, and the other end of the resistor should be connected to the power supply. The cathode (shorter lead) of the LED should be connected to the RE1/AN6 pin on the microcontroller.
  3. Program the microcontroller: You'll need to configure the RE1/AN6 pin as an output and then write high or low values to it to turn the LED on and off, respectively. This will need to be done in your microcontroller's programming environment using the appropriate language and syntax.
Please note that this is a general guideline and the actual implementation might vary depending on the specific components and circuit design. Always refer to the datasheet of the components you are using for detailed information.
Here is a simple schematic diagram of the connection:
  VDD
   |
  [R]
   |
  [A]---[K]--- RE1/AN6 (PIC16F887-I/P)
 LED

  • VDD: Power supply (5V)
  • R: Resistor (150 Ohms)
  • A: Anode of the LED
  • K: Cathode of the LED
  • RE1/AN6: Pin on the PIC16F887-I/P microcontroller
Please note, you need to consider the current sourcing capability of the PIC16F887-I/P microcontroller's pin and it's maximum total current sourcing capability. It's always a good idea to verify these values from the datasheet.
1y
Para utilizar los pines como entradas y salidas en el microcontrolador PIC16F887-I/P necesitarás declararlos en tu código, usualmente utilizando un lenguaje como C o ensamblador. La especificidad de las instrucciones para hacer esto dependerá del compilador o entorno de programación que estás utilizando.
En términos generales, puedes definir los pines como entrada (READ) o salida (WRITE) configurando los registros de dirección relevantes en tu código. En PIC16F887-I/P, cada puerto tiene un registro TRIS asociado (TRISA - TRISE) que define la dirección de los pines.
Por ejemplo, puedes configurar los pines como sigue:

  • Para configurar el pin RE1/AN6 como salida: debe especificar esto en el registro TRISE (TRIS E), que maneja los pines del Puerto E. En el caso de RE1, debes establecer el segundo bit de TRISE en 0 (porque los bits en los registros TRIS configurados en 0 se comportan como salidas).
  • Para configurar RD0 como entrada: debes especificar esto en el registro TRISD (TRIS D), que maneja los pines del puerto D. En el caso de RD0, debes establecer el primer bit de TRISD en 1 (porque los bits en los registros TRIS configurados en 1 se comportan como entradas).
Por tanto, asegúrate de tener un buen manejo de la programación del microcontrolador para implementar la configuración deseada de los pines. Recuerda que también necesitarás un compilador y una herramienta de carga para programar el microcontrolador con tu código.
La función de la entrada o salida depende de su aplicación y código implementado.
11mo
CONECTAR ENTRADAS Y SALIDAS
11mo
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reac...
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reach me at any time by tagging me on comments or in the chat with my handle, @copilot.
1y
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports components that have been modified using the "!important" flag.
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.