• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
U2
U1
please explain what J1 does.

@copilot please explain what J1 does.
1mo
The component J1 in your schematic is described as a connector from JST Sales America Inc. It has two pins:

  • Pin 1 (Pin_1): This pin is connected to the VBAT net, which typically supplies power to components.
  • Pin 2 (Pin_2): This pin is connected to the ground (GND) net.
Given the use of J connectors, this likely serves as a battery or power input connector for your pet tracker design, connecting an external battery or power source to power the circuit. The specific type of JST connector isn't detailed here, but this family of connectors is often used in battery connections due to their secure locks and durability. If you need more detailed information about the specific JST part, you might need to refer to the datasheet or component documentation.
1mo
Someone is typing...
please explain what U2 does.

@copilot please explain what U2 does.
5mo
Certainly! Let's analyze the details provided:
Component Overview
Designator: U2
MPN: NEO-6M-GPS
Manufacturer: U-blox
License: CC BY 4.0
Pins:

  • CFG_GPS0/SCK: Pin 16
  • EXTINT0: Pin 4
  • GND: Pins 10, 12, 13, and 24
  • MISO/CFG_COM1: Pin 15
  • MOSI/CFG_COM0: Pin 14
  • RF_IN: Pin 11
  • RSVD_17: Pin 17
  • RSVD_8: Pin 8
  • RXD1: Pin 21
  • SCL2: Pin 19
  • SDA2: Pin 18
  • SS_N: Pin 2
  • TIMEPULSE: Pin 3
  • TXD1: Pin 20
  • USB_DM: Pin 5
  • USB_DP: Pin 6
  • V_BCKP: Pin 22
  • VCC: Pin 23
  • VCC_RF: Pin 9
  • VDDUSB: Pin 7
NEO-6M-GPS Module
The NEO-6M-GPS from U-blox is a standalone GPS receiver module that is used for acquiring and tracking GPS satellite signals, and it provides location information, such as latitude, longitude, and altitude. Here's a summary of its key functionalities and usage:

  1. GPS Signal Reception:

    • RF_IN (Pin 11): This pin is connected to the GPS antenna to receive signals from GPS satellites.
    • VCC_RF (Pin 9): Provides power for the RF signal processing internal to the module.
  2. Power Pins:

    • VCC (Pin 23): Main power input for the module.
    • GND (Pins 10, 12, 13, and 24): Ground connections.
    • VDDUSB (Pin 7): Power input for USB connectivity.
    • V_BCKP (Pin 22): Backup power supply for RTC and module configuration retention.
  3. Communication Interfaces:

    • UART:

      • TXD1 (Pin 20): Transmits data to a microcontroller e.g.,locationdatae.g., location data.
      • RXD1 (Pin 21): Receives configuration commands from a microcontroller.
    • I2C:

      • SDA2 (Pin 18): Serial data line.
      • SCL2 (Pin 19): Serial clock line.
    • SPI:

      • SCK (Pin 16): Serial clock.
      • MISO (Pin 15): Master In Slave Out.
      • MOSI (Pin 14): Master Out Slave In.
      • SS_N (Pin 2): Slave select.
  4. USB Interface:

    • USB_DM (Pin 5): Negative USB data line.
    • USB_DP (Pin 6): Positive USB data line.
  5. Control and Status Pins:

    • EXTINT0 (Pin 4): External interrupt input, used for waking up the module.
    • TIMEPULSE (Pin 3): Provides a time pulse output e.g.,1PPS1pulseperseconde.g., 1PPS - 1 pulse per second.
    • CFG_GPS0/SCK (Pin 16): Configuration and clock pin.
Key Functions of U2 in the Pet Tracker:

  1. Location Tracking: U2 is responsible for receiving GPS signals and determining the current location of the pet.
  2. Data Communication: It communicates the location data to the STM32 U4U4 via UART TXD1andRXD1pinsTXD1 and RXD1 pins. This data might then be processed or forwarded to the SIM800L U1U1 to be sent over a network.
This module plays a critical role in ensuring that the pet tracker can accurately determine and relay the pet's location.
If you need more specific information on how to interface with this module or about its internal workings, please let me know!
5mo
Someone is typing...
2
does this module support data transfer over sim card?

@copilot does this module support data transfer over sim card?
3d
Yes, the SIM800L module included in your project supports data transfer over a SIM card. The SIM800L is a GSM/GPRS module that can be used to send and receive data over the cellular network. It supports GPRS multi-slot class 12/10 and coding schemes CS-1, CS-2, CS-3, and CS-4.
It can be controlled via AT commands and is suitable for SMS messaging, making calls, and data transfer applications like your pet tracker. Is there anything specific you'd like to know about configuring or using the SIM800L for data transfer?

1

3d
3d
Great! To configure the SIM800L for data transfer over a SIM card, you'll typically need to do the following:

  1. Power Supply: Ensure the module is powered correctly. The SIM800L requires a stable voltage supply, typically around 3.4V to 4.4V.
  2. Antenna and SIM Card: Connect an antenna to the SIM800L to ensure it can receive signals properly. Insert an active SIM card that has data capabilities.
  3. Serial Communication: You'll control the SIM800L using serial communication. Connect the module's RXD and TXD pins to your microcontroller's UART pins. In your project, these connections are:

    • Connect U1:RXDU1:RXD (SIM800L RXD) to U4:PA9U4:PA9 (STM32L4).
    • Connect SIMTX:P1SIM_TX:P1 to U4:PA10U4:PA10.
  4. AT Commands: Control the module using AT commands sent over the serial interface. Here are some common commands:

    • Initialization: Send AT and check for OK.
    • Network Registration: Send AT+CREG? to check network registration status.
    • Data Mode: To start a GPRS connection, set the APN with AT+CSTT="your_apn".
    • Start GPRS: Use AT+CIICR to bring up the wireless connection.
    • Get IP: Use AT+CIFSR to get the IP address while connected to the network.
    • Close Connection: Turn off GPRS with AT+CIPSHUT.
  5. Data Transfer: For sending and receiving data, you typically use the HTTP or TCP/IP protocols over the socket opened by AT commands.
Would you like more details or help with specific AT commands or steps?
3d
Someone is typing...
12
please explain what U2 does.

@copilot please explain what U2 does.
3mo
Absolutely! The component /design/U2 in your project is a NEO-6M-GPS module manufactured by U-blox. Here's a breakdown of what this module does and its role in your pet tracker design:
NEO-6M-GPS Module Key Features:

  • GPS Reception: The NEO-6M-GPS is a GPS receiver module that provides location data to the microcontroller by receiving signals from GPS satellites.
  • UART Communication: It communicates with the STM32L4 microcontroller via a UART interface.
  • Integrated Antenna: The module can support an external antenna through the RF_IN pin for improved signal reception.
  • Backup Power: It can use a backup battery to maintain the time and satellite data, allowing for quicker fixes.
Pin Description:

  • VCC (Pin 23): Main power supply input.
  • GND (Pins 10, 12, 13, 24): Ground connections.
  • TXD1 (Pin 20): Transmit Data for UART communication.
  • RXD1 (Pin 21): Receive Data for UART communication.
  • RF_IN (Pin 11): Input for the external antenna.
  • VBCKP (Pin 22): Backup battery input for faster acquisition.
Connection in the Project:
This module is essential for your pet tracker design, providing the location data that the STM32L4 microcontroller will process and send to the server through the SIM800L module.
If you need more specific details or have any particular questions about how to integrate or configure the NEO-6M-GPS module, please let me know!
3mo
Someone is typing...
6
Check that none of the unconnected pins require pull-up or pull-down resistors t...

@copilot Check that none of the unconnected pins require pull-up or pull-down resistors to ensure proper function.
3mo
Let's review the design to identify unconnected pins that might require pull-up or pull-down resistors for proper functioning. We'll specifically look at the STM32L4 MCU and any peripheral devices connected to it.
STM32L4 Microcontroller STM32L442KCU6

  • PA0 – PA15: Ensure no floating pins, as they can cause erratic behavior.
  • PB0 – PB7: Same considerations as PA pins.
  • PC14, PC15: Typically used for oscillator; ensure they're handled appropriately.
  • PH3: General-purpose I/O pin.
Connections

  • PA2, PA3, PA9, PA10, PA13, PA14: Connected as GPS_RX, GPS_TX, SIM_RX, SIM_TX, SWDIO, SWCLK (no pull-up or pull-down needed as they are connected to other components).
Peripherals

  • NEO-6M GPS: Check for any configuration pins that might need pull-up/pull-down.
  • SIM800L: Ensure pins like RST, TXD, RXD are managed correctly.
  • 24AA32A-I/ST: EEPROM, check SDA and SCL lines.
Steps:

  1. Unconnected pins on STM32L4: Verify no floating input pins. Add pull-ups or pull-downs if necessary.
  2. GPS Module: Ensure no configuration pins like CFG_GPS0/SCK are left floating.
  3. SIM800L: Check RST, TXD, RXD, and other control pins.
  4. EEPROM (SDA, SCL): Typically, I²C lines need pull-up resistors.
Let's identify specific signals and confirm the appropriate pull-ups or pull-downs:

  1. STM32L4:

    • PA0 through PA15 and PB0 through PB7: Unused GPIOs should either be configured as analog mode or have pull-up/down resistors in place.
    • NRST: Already managed.
  2. GPS Module (NEO-6M):

    • CFG_GPS0/SCK: Needs to be checked.
    • Other pins seem connected as per the schematic.
  3. SIM800L:

    • RST: Needs to confirm proper handling (connected to SIM_RST net).
  4. EEPROM (24AA32A-I/ST):

    • SDA and SCL: Typically require 10k pull-up resistors for proper operation.
Let's summarize the required connections:
STM32 Unconnected GPIOs (Hypothetical):

  • PA0, PA1, PA4-PA8, PA11-PA12, PA15, PB0-PB7: Consider configuring as analog mode or with pull-up/pull-down resistors if left unused.
GPS Module:

  • Connect CFG_GPS0/SCK to GND or VCC (based on configuration).
SIM800L:

  • RST (Reset pin): Connected properly to SIM_RST net.
EEPROM:

  • Connect SDA to 3V3 via 10k pull-up resistor.
  • Connect SCL to 3V3 via 10k pull-up resistor.
For exact implementation in your schematic on Flux, you can add resistors or simply configure the unused pins accordingly.
If you need, I can help you design the specific connections. Do you want to review or add these resistors to your flux project?
3mo
Someone is typing...
5
explain this project.

@copilot explain this project.
1mo
This project is a Pet Tracker Reference Design that uses an STM32L4 microcontroller to track a pet's location and communicate with a network via a SIM800L module. Here's a breakdown of how the main components work together:
Key Components:

  • Microcontroller (U4: STM32L442KCU6): This is the brain of the tracker, responsible for processing and controlling all functions. It interfaces with the GPS and cellular modules.
  • GPS Module (U2: NEO-6M-GPS): Provides location data to the microcontroller via a UART interface.
  • SIM Module (U1: SIM800L): Enables cellular communication, allowing the pet tracker's location data to be sent to a server.
  • Power Regulation (U5: AP2112K-3.3TRG1): Provides 3.3V to the rest of the circuit from the main power source.
  • Battery Management (IC1: MCP73831T-2ACI/OT): Manages the charging of the battery BT1BT1.
Connections:

  • Power Supply:

    • The system can be powered via USB J3J3 or from a battery BT1BT1.
    • The 3.3V regulator provides a stable voltage supply to components that require it.
  • Communication:

    • The STM32 MCU communicates with the GPS module using UART. Connect U4U4 (PA2) to U2U2 (RXD1) and U4U4 (PA3) to U2U2 (TXD1).
    • The SIM800L module is connected to the STM32 via UART for communication. Connect U4U4 (PA10) to U1U1 (TXD) (Net 15) and U4U4 (PA9) to U1U1 (RXD).
  • Peripherals:

    • An EEPROM (U3: 24AA32A-I/ST) is connected to store data, interfaced via I2C with the STM32.
    • LEDs (LED1 and LED2) are used for indicating the status of the system. They are connected to suitable GPIO pins on the STM32.
Additional Information:

  • Ground (GND): Common ground connections for the entire circuit to ensure all components are at the same reference voltage.
  • There are some nets used for connections, such as the reset line for the MCU and SIM module, provided there are appropriate lines like Net 16 (for SIM_RST).
This design combines location tracking capability with communication functionality to ensure the pet's location can be reliably transmitted to a server, providing real-time tracking. If you need further details on specific sections, feel free to ask!
1mo
Someone is typing...
11
please explain what U5 does.

@copilot please explain what U5 does.
1mo
The component U5 in your project is an AP2112K-3.3TRG1, which is a low dropout (LDO) linear voltage regulator manufactured by Diodes Incorporated. It provides a regulated output voltage of 3.3V. Here are some details about its functionality:

  • Input Voltage $V_{IN}$: The input voltage range typically needs to be higher than the regulated output voltage, considering the dropout voltage. For the AP2112, the dropout voltage is quite low, allowing for efficient regulation.
  • Output Voltage $V_{OUT}$: Provides a steady 3.3V output, which is used in your project to power various 3.3V components.
  • Enable Pin $EN$: The regulator will only output 3.3V when this pin is driven high. It allows the regulator to be enabled or disabled to save power when regulation is not needed.
  • Ground $GND$: Provides a reference point for the regulator and relates to the system ground.
This component plays a crucial role in managing power for the circuits by ensuring a consistent 3.3V output for stable device operation. It's connected to several components in your schematic that require a 3.3V supply.
1mo
Someone is typing...
9
how much does this project cost

@copilot how much does this project cost
2mo
To estimate the cost of your project, we need to sum up the prices of all the components used in the design. Based on the available list of part numbers in your project, here are the main components with their approximate prices:

  1. SIM800L: $8.29
  2. NEO-6M-GPS: (Price not listed)
  3. TYPE-C-31-M-12: $0.16
  4. AP2112K-3.3TRG1: $0.08 (average)
  5. 24AA32A-I/ST: $0.50 (average)
  6. FTSH-105-01-L-DV-007-K: $2.68
  7. ML414H IV01E: $1.43 (average)
  8. STM32L442KCU6: $5.97 (average)
  9. MCP73831T-2ACI/OT: $0.71 (average)
For parts without a listed price, you might need to get quotes directly from suppliers or consider using placeholders for an estimate. Let's sum up the cost for the parts with the prices mentioned:
Total Estimated Cost=8.29+0.16+0.08+0.50+2.68+1.43+5.97+0.71=$19.82\text{Total Estimated Cost} = 8.29 + 0.16 + 0.08 + 0.50 + 2.68 + 1.43 + 5.97 + 0.71 = \$19.82
Keep in mind that this is a rough estimate and doesn't include additional costs like shipping, taxes, and potential component substitutions due to stock availability. If you need precise costing, you should check with distributors for the current pricing and availability.
2mo
Someone is typing...
7
create a high level mermaid block diagram of U4. Include key component's manufac...

@copilot create a high level mermaid block diagram of U4. Include key component's manufacturer part number in each block whenever possible.
4mo
Sure, here's a high-level Mermaid block diagram for the STM32L442KCU6 (U4).

Image


IO Pins
GPIOA (PA0-PA15: Pins 6-15, 18-25)
GPIOB (PB0-PB7: Pins 14, 15, 26-30)
GPIOH (PH3: Pin 31)
Reset & Clock
NRST (Pin 4)
SWCLK (PA14: Pin 24)
SWDIO (PA13: Pin 23)
Communication Interfaces
UART1 (PA9: Pin 19, PA10: Pin 20)
UART2 (PA2: Pin 8, PA3: Pin 9)
Power Subsystem
VDD (Pin 1, 17, 33)
VDDA (Pin 5)
VSS (Pin 16, 32, 33)
STM32L442KCU6
4mo
3mo
Someone is typing...
4
list all the parts used in this schematics along with its designator

@copilot list all the parts used in this schematics along with its designator
1mo
Here's a list of all the parts used in the schematic along with their designators:

  • GPS Module: U2 (NEO-6M-GPS)\text{(NEO-6M-GPS)}
  • GSM Module: U1 (SIM800L)\text{(SIM800L)}
  • MCU: U4 (STM32L442KCU6)\text{(STM32L442KCU6)}
  • EEPROM: U3 (24AA32A-I/ST)\text{(24AA32A-I/ST)}
  • Voltage Regulator: U5 (AP2112K-3.3TRG1)\text{(AP2112K-3.3TRG1)}
  • Battery Charger: IC1 (MCP73831T-2ACI/OT)\text{(MCP73831T-2ACI/OT)}
  • Inductor: L1 (22 µH)\text{(22 µH)}
  • Capacitors:

    • C1 (10 µF)\text{(10 µF)}
    • C2 (10 µF)\text{(10 µF)}
    • C3 (4.7 µF)\text{(4.7 µF)}
    • C4 (4.7 µF)\text{(4.7 µF)}
    • C5 (1 µF)\text{(1 µF)}
  • Resistors:

    • R1 (1 kΩ)\text{(1 kΩ)}
    • R2 (1 kΩ)\text{(1 kΩ)}
    • R3 (22 Ω)\text{(22 Ω)}
    • R4 (5 kΩ)\text{(5 kΩ)}
    • R5 (5 kΩ)\text{(5 kΩ)}
    • R6 (2 kΩ)\text{(2 kΩ)}
    • R7 (1 kΩ)\text{(1 kΩ)}
    • R8 (10 kΩ)\text{(10 kΩ)}
  • LEDs:
  • Diode: D1
  • Battery: [BT1](ML414H IV01E) (ML414H IV01E)\text{(ML414H IV01E)}
  • Connectors:

    • [J1](JST Sales America Inc.)
    • J2
    • J3 (TYPE-C-31-M-12)\text{(TYPE-C-31-M-12)}
    • J4 (FTSH-105-01-L-DV-007-K)\text{(FTSH-105-01-L-DV-007-K)}
If you need more information about any specific part, feel free to ask!
1mo
Someone is typing...
10
GPS_RX
VUSB
VBAT
3V3
SIM_RST
R7
Resistance
1K Ω
STM_RST
SWCLK
VBAT
VUSB
3V3
GPS_TX
C3
Capacitance
4.7u F
SIM_TX
R3
Resistance
22 Ω
SIM_RX
SIM_RST
L1
Inductance
22u H
J1
SCL
C2
Capacitance
10u F
R8
Resistance
10K Ω
GPS_RX
3V3
3V3
J3
3V3
D1
SWCLK
C1
Capacitance
10u F
3V3
U5
SIM_TX
3V3
C4
Capacitance
4.7u F
C5
Capacitance
1u F
VBAT
U3
VUSB
R4
Resistance
5K Ω
STM_RST
LED2
R2
Resistance
1K Ω
J4
R6
Resistance
2K Ω
SDA
SWDIO
R5
Resistance
5K Ω
SWDIO
SDA
VBAT
BT1
LED1
SCL
R1
Resistance
1K Ω
GPS_TX
SIM_RX
J2
U4
IC1

Pet Tracker Device

Pet Tracker Device
Description

Created
January 22nd 2024
Last updated by jharwinbarrozo
a month ago
2 Contributor(s)
vasyl
jharwinbarrozo

Controls

Availability & Pricing

DistributorQty 1
Digi-Key$8.52–$9.78
LCSC$13.91
Mouser$8.23

Assets

    Thumbnail
  • thumbnail
    Pet Tracker Reference Design.png

    id=Pet Tracker Reference Design

Simulation

µs

Simulation Speed

dame el diseño de este proyecto en 3d
@copilot dame el diseño de este proyecto en 3d
1mo
Para obtener una vista en 3D de tu diseño de circuito electrónico en Flux, necesitarás utilizar la herramienta Flux.ai directamente. Flux ofrece capacidades de visualización en 3D dentro de su interfaz en línea para que puedas ver y manipular tus diseños de PCB desde diferentes ángulos.
Aquí tienes una guía básica para visualizar tu diseño en 3D en Flux:

  1. Inicia sesión en tu cuenta de Flux.ai.
  2. Abre el proyecto de diseño del rastreador de mascotas.
  3. Busca una opción que diga "Vista en 3D" o "3D View" en la interfaz. Esto puede estar en la parte superior o en los menús laterales, dependiendo de la última interfaz de usuario de Flux.
  4. Al hacer clic, el diseño de tu PCB se renderizará en 3D.
  5. Puedes rotar, hacer zoom y desplazar la vista para inspeccionar diferentes aspectos de tu diseño.
Si aún no tienes el diseño cargado en Flux, deberías considerar configurar y simular tu diseño primero en la plataforma para habilitar las capacidades de visualización 3D. Si necesitas más ayuda con el proceso, házmelo saber y podría guiarte más a fondo sobre la configuración de componentes específicos o conexiones.
1mo
modifica este proyecto donde se use un esp32, el modulo gps, sensor AD8232, sensor MAX30205MTA+T y que el esp32 capte los datos de estos componentes
1mo
Para modificar el proyecto y hacer uso de un ESP32, manteniendo el módulo GPS, y añadiendo los sensores AD8232 (sensor de señal de ECG) y MAX30205MTA+T (sensor de temperatura), procederemos de la siguiente manera:
Componentes Principales

  1. ESP32: Esta será la microcontroladora principal que se utilizará para captar y procesar los datos de los demás componentes.
  2. Módulo GPS (NEO-6M-GPS): Permite determinar la ubicación.
  3. Sensor AD8232: Captar la señal de ECG.
  4. Sensor MAX30205MTA+T: Medir la temperatura corporal.
Conexiones Sugeridas

  • ESP32 y Módulo GPS:

    • Connect ESP32:RX2 to U2:TXD1 (GPS_TX).
    • Connect ESP32:TX2 to U2:RXD1 (GPS_RX).
  • ESP32 y Sensor AD8232:

    • Connect ESP32:ADC1 to AD8232:OUTPUT (datos del sensor ECG).
    • Connect ESP32 pin a GND y VCC del AD8232 para energía.
  • ESP32 y Sensor MAX30205MTA+T:

    • Conecta los pines I2C del ESP32 a los pines correspondientes del sensor MAX30205MTA+T para la comunicación:

      • Connect ESP32:SDA to MAX30205MTA+T:SDA.
      • Connect ESP32:SCL to MAX30205MTA+T:SCL.
    • Asegúrate de conectar también GND y VCC para suministrar energía.
Alimentación

  • Asegúrate de que todos los componentes están alimentados correctamente:

    • El ESP32 puede ser alimentado generalmente por 3.3V, que puede ser suministrado por un regulador si no usas una versión equipada con conversión de tensión interna.
    • Utiliza el regulador AP2112K-3.3TRG1 existente para proporcionar una alimentación constante de 3.3V a los componentes si es necesario.
Consideraciones Adicionales

  • Conexionado I2C: Asegúrate de incluir resistencias de pull-up en las líneas SCL y SDA cuando uses I2C.
  • Distribución de Alimentación: Verifica que la fuente de alimentación soporte la corriente requerida por todos los dispositivos.
¿Te gustaría saber algo más específico sobre la integración de estos componentes o necesitas más detalles sobre las conexiones?
1mo
como puedo visualizar el proyecto de manera mas grafica
@copilot como puedo visualizar el proyecto de manera mas grafica
1mo
Podemos crear un diagrama de bloques utilizando el lenguaje Mermaid para ilustrar cómo están conectados los principales componentes del diseño de tu rastreador para mascotas. Vamos a hacer un diagrama básico:

Image


UART
UART
I2C
Alimentación
Alimentación
Alimentación
U4: STM32L442KCU6
U1: SIM800L
U2: NEO-6M-GPS
BT1: Batería
J3: Conector USB Tipo-C
U3: 24AA32A-I/ST
Este diagrama muestra una visión general de cómo los componentes principales se comunican y están alimentados en tu proyecto. Puedes personalizar el diagrama o agregar más detalles según las conexiones específicas que tengas en el diseño. ¿Alguna conexión adicional que quieras ver en particular?
1mo
pero quiero ver los componentes no la grafica de circuitos
1mo
Para visualizar los componentes de tu proyecto de una manera más gráfica en lugar de un diagrama esquemático tradicional, puedes hacer lo siguiente en Flux:

  1. Componentes Individuales: En Flux, cada componente que agregas a tu proyecto está respaldado por una representación visual en la biblioteca de componentes. Puedes ver imágenes de los componentes en la biblioteca de Flux, lo que te dará una idea de cómo se ven físicamente.
  2. Vista de Disposición (PCB Layout): Si quieres ver cómo se organizan físicamente los componentes en una placa de circuito impreso (PCB), puedes utilizar la vista de disposición en Flux para posicionar los componentes, trazar rutas de cobre, y visualizar el diseño del PCB. Aunque esto aún no te mostrará el montaje completo, te ayudará a visualizar cómo encajarán los componentes.
  3. Renderizado 3D: Si has diseñado tu PCB en Flux, puedes usar la herramienta de visualización 3D para ver cómo se vería el montaje final de la placa con los componentes montados.
  4. Mermaid para Listado de Componentes: Podemos crear un diagrama de texto simple de la lista de componentes para darte una perspectiva más organizada:

Image


Componentes
U1: SIM800L
U2: NEO-6M-GPS
U3: 24AA32A-I/ST
U4: STM32L442KCU6
U5: AP2112K-3.3TRG1
IC1: MCP73831T-2ACI/OT
BT1: ML414H IV01E
J3: TYPE-C-31-M-12
Este diagrama lista los componentes clave con sus designadores. Para explorar visualmente, puedes usar las herramientas propuestas dentro de Flux. ¿Te gustaría saber más sobre alguna función o características adicionales en Flux?
1mo
quiero que modifiques este trabajo y le agreges un sensor de temperatura y uno de frecuencia cardiaca
1mo
Claro, podemos añadir un sensor de temperatura y uno de frecuencia cardiaca al diseño del rastreador para mascotas. Vamos a asumir que queremos usar sensores que puedan integrarse fácilmente con el STM32L442KCU6 mediante interfaces comunes como I2C o SPI. Aquí tienes algunas sugerencias para los sensores:

  1. Sensor de Temperatura: Un sensor como el LM75, que se conecta mediante I2C, sería adecuado.
  2. Sensor de Frecuencia Cardiaca: Podemos considerar usar un sensor como el MAX30100 que puede medir la frecuencia cardíaca y la oxigenación de la sangre, y también se comunica por I2C.
Para integrar estos sensores al diseño, tendríamos que:

  • Añadir los sensores a la lista de componentes.
  • Conectar los sensores usando la interfaz I2C.
Conexiones Sugeridas

  • LM75 (Sensor de Temperatura)

    • Conectar SensorLM75:SCL a STM32L442KCU6:PB6 (I2C_SCL)
    • Conectar SensorLM75:SDA a STM32L442KCU6:PB7 (I2C_SDA)
    • Conectar SensorLM75:VCC a 3V3 (3.3V de alimentación)
    • Conectar SensorLM75:GND a GND
  • MAX30100 (Sensor de Frecuencia Cardiaca)

    • Conectar SensorMAX30100:SCL a STM32L442KCU6:PB6 (I2C_SCL)
    • Conectar SensorMAX30100:SDA a STM32L442KCU6:PB7 (I2C_SDA)
    • Conectar SensorMAX30100:VCC a 3V3 (3.3V de alimentación)
    • Conectar SensorMAX30100:GND a GND
Actualización en el Diagrama de Bloques
Aquí te muestro cómo puedes modificar el diagrama de bloques para incluir estos nuevos sensores:

Image


UART
UART
I2C
I2C
I2C
Alimentación
Alimentación
Alimentación
U4: STM32L442KCU6
U1: SIM800L
U2: NEO-6M-GPS
BT1: Batería
J3: Conector USB Tipo-C
U3: 24AA32A-I/ST
LM75: Sensor de Temperatura
MAX30100: Sensor de Frecuencia Cardiaca
Con estas adiciones, tu diseño ahora puede monitorear la temperatura y el ritmo cardíaco junto con la funcionalidad de rastreo GPS y comunicación de red. ¿Hay algún otro detalle que quieras explorar o modificar?
1mo
los componentes de este proyecto tiene un esp32?
1mo
No, el proyecto que has compartido no incluye un ESP32. El diseño se basa principalmente en el microcontrolador STM32L442KCU6 para el procesamiento, junto con los módulos SIM800L para la conectividad de red y NEO-6M-GPS para el rastreo GPS.
Si deseas agregar un ESP32 al diseño, podríamos discutir cómo integrarlo con el resto de los componentes para aprovechar sus capacidades, como la conectividad Wi-Fi y Bluetooth. ¿Te gustaría saber más sobre cómo integrar un ESP32 en este proyecto?
1mo
si, integra el esp32
1mo
Para integrar un ESP32 en tu proyecto de rastreador de mascotas, podemos aprovechar sus capacidades de conectividad Wi-Fi y Bluetooth, lo que podría ampliar las posibilidades de comunicación del dispositivo. Aquí tienes una sugerencia sobre cómo hacerlo:
Selección de Espacio

  1. Conectividad: Usa el ESP32 para manejar las comunicaciones Wi-Fi y Bluetooth, mientras el SIM800L podría continuar para la conectividad celular.
  2. Interfaz con microcontrolador STM32: El ESP32 puede comunicarse con el STM32L442KCU6 utilizando UART, SPI, o I2C, dependiendo de tu aplicación preferida.
  3. Programación y Ajuste de Potencia: Asegúrate de alimentar adecuadamente el ESP32, típicamente con una fuente de 3.3V, y configura sus pines de programación (GPIO0/GPIO2) para facilitar la depuración y el desarrollo.
Conexiones Sugeridas

  • Espacio Alimentación y Comunicación:

    • Alimentar ESP32: VCC desde 3V3.
    • Conectar ESP32: GND a GND.
  • Comunicación UART con STM32:

    • Conectar ESP32: TXD a STM32L442KCU6: PA10 $UART_RX$
    • Conectar ESP32: RXD a STM32L442KCU6: PA9 $UART_TX$
Esto proporciona una línea de comunicación básica entre el ESP32 y el STM32, facilitando el intercambio de datos o comandos.
Actualización en el Diagrama de Bloques
Aquí tienes un diagrama de bloques modificado para incluir el ESP32:

Image


UART
UART
UART
I2C
I2C
I2C
Alimentación
Alimentación
Alimentación
U4: STM32L442KCU6
ESP32
U1: SIM800L
U2: NEO-6M-GPS
BT1: Batería
J3: Conector USB Tipo-C
U3: 24AA32A-I/ST
LM75: Sensor de Temperatura
MAX30100: Sensor de Frecuencia Cardiaca
¿Te gustaría explorar otras funcionalidades del ESP32 o necesitas más ayuda para su integración?
1mo
what are names the parts mentioned below in this file IC1, U4, U1, J3, J1, J2
@copilot what are names the parts mentioned below in this file IC1, U4, U1, J3, J1, J2
1mo
Here are the names of the parts you mentioned:

  • IC1: MCP73831T-2ACI/OT (Microchip Technology)
  • U4: STM32L442KCU6 (STMicroelectronics)
  • U1: SIM800L (Simcom)
  • J3: TYPE-C-31-M-12 (Korean Hroparts Elec)
  • J1: JST Sales America Inc.
  • J2: This part does not have a specific manufacturer part number or name mentioned.
1mo
also what is J4
1mo
The part J4 is FTSH-105-01-L-DV-007-K, manufactured by Analog Devices.
1mo
what is U3 in this file
@copilot what is U3 in this file
1mo
In this project, the component with the designator U3 is a Microchip 24AA32A-I/ST, which is an EEPROM memory chip. It has the following pin configuration:

  • Pin 1 $A0$: Device address bit
  • Pin 2 $A1$: Device address bit
  • Pin 3 $A2$: Device address bit
  • Pin 4 $VSS$: Ground
  • Pin 5 $SDA$: Serial Data
  • Pin 6 $SCL$: Serial Clock
  • Pin 7 $WP$: Write Protect
  • Pin 8 $VCC$: Power supply
This chip is used for storing data non-volatilely in embedded systems.
1mo
what is the gps model
@copilot what is the gps model
3mo
The GPS module used in this project is the NEO-6M-GPS from U-blox.
3mo
what is the gps model
what is the gps model
3mo
can you write me a short(100-200 symbols) description for this project
@copilot can you write me a short(100-200 symbols) description for this project
10mo
can you write me a short(100-200 symbols) description for this project
@copilot can you write me a short(100-200 symbols) description for this project
10mo
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Des
Net
Des
Net
P1
Net 6
1-1
P1
Net 6
1-2
Trace a520
Net 6
1-2
Trace a520
Net 6
1-1
VSS
GND
VSS
GND
VSS
GND
VSS
GND
VSS
GND
VSS
GND
VSS
GND
VSS
GND
VSS
GND
Trace b39e
GND
Trace b7f0
GND
Trace b39e
GND
Trace b7f0
GND
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Designator
Ruleset
*`REF`*
C1
*`REF`*
C4
*`REF`*
U5
*`REF`*
R5
*`REF`*
J1
*`REF`*
R2
*`REF`*
BT1
*`REF`*
J3
*`VALUE`*
L1 value
*`REF`*
R4
*`REF`*
J2
*`REF`*
R1
*`REF`*
C3
*`REF`*
U1
*`REF`*
C2
*`REF`*
R6
*`REF`*
R7
*`REF`*
R8
Designators
Net
P2, VSS
GND
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.