Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
Based on the provided project information, there are no active components listed, such as microprocessors or ICs, that typically require reset/enable pins. Thus, the task of checking pull-up or pull-down resistors for reset/enable pins is not applicable. However, I suggest you consider the following actions once you add active components:
Identify the components having reset/enable pins.
Ensure each one of these pins is correctly connected to a pull-up or pull-down resistor depending on the requirements for that pin in the datasheet.
Verify the value of these resistors based on manufacturer's recommendation.
Please add the relevant active components to your schematic for further guidance.
1y
Someone is typing...
Check that all reset/enable have an external pull-up or pull-down resistors. Rep...
Looking at the project description, I see a component, PC817C, which is an optoisolator transistor and doesn't have a reset/enable pin. Also, the project description mentions that no electrical connections have been made yet. Therefore, it's not possible to verify if all reset/enable pins have pull-up or pull-down resistors.
Going forward, here are the actions you may need to take:
Identify all components that have a reset/enable pin. These are typically microcontrollers, digital logic chips, etc.
For each reset/enable pin, add a pull-up or pull-down resistor. The value of these resistors typically ranges from 1kΩ to 10kΩ, but you'll need to check the data sheet for each component to be sure.
Make the electrical connections in the Flux Schematic editor for these components and resistors.
Re-check the circuit to ensure that the resistors have been correctly placed and connected.
Please note: these actions assume that your design will include other components with reset/enable pins. If your project only includes the optoisolator transistor PC817C, no actions related to reset/enable pins are needed at this point.
It seems like you're looking to integrate a PC817C optoisolator into your circuit, but you haven't specified what you'll be using it for or what other components you have in your circuit besides some passive components with unspecified roles. The PC817C is a versatile component often used for isolating different parts of a circuit from each other, providing both electrical isolation and signal transfer. Its most common applications include isolating microcontroller inputs from high voltage circuits, driving relays, and more.
Here are some general recommendations on how you might use the PC817C in a circuit, given the lack of specifics:
Using PC817C in a Circuit
Input Side (LED Side, Pins 1 and 2):
Connect an appropriate resistor (R1) in series with the Pin 1 (anode) of the PC817C to limit the current through the LED inside the optoisolator. The value of this resistor depends on the driving voltage and the forward voltage of the LED inside the PC817C (typically around 1.2V). Assuming a 5V microcontroller GPIO is driving the LED:
R=IfVdrive−Vf
Assuming Vdrive=5V, Vf=1.2V, and If=10mA (a common forward current for indication):
R=10mA5V−1.2V=380Ω
So, you can use a standard 390Ω resistor as R1.
Connect: R1:1 to PC817C:1 and R1:2 to the microcontroller's GPIO pin.
Connect: PC817C:2 to the ground.
Output Side (Transistor Side, Pins 3 and 4):
Pin 3 is the collector and Pin 4 is the emitter of the transistor inside the PC817C.
You can connect Pin 3 to one end of the load you wish to control and the other end of your load to the positive supply voltage.
The emitter (Pin 4) should typically be connected to the ground.
Assumptions Made
The driving source is a 5V microcontroller GPIO.
The load to be controlled is not specified; hence a generic connection recommendation is provided.
Recommendations
Resistor before LED Side: Ensure you calculate the current limiting resistor based on your actual driving voltage and desired forward current through the optoisolator LED.
Check PC817C Datasheet: Always verify the absolute maximum ratings and recommended operating conditions from the PC817C datasheet for your specific application.
Circuit Protection: Consider adding a diode in reverse parallel across inductive loads (like relays or motors) to protect the optoisolator from voltage spikes.
Without more specifics on your project, these recommendations are quite generic. If you plan on connecting other components or have specific requirements (such as controlling an AC load or requiring higher isolation voltages), please provide more details for more targeted advice.
In the PC817C optoisolator, as well as most standard 4-pin optoisolators, the pins are typically numbered consecutively from 1 to 4 when looking at the device with the text oriented so that it can be read (i.e., the text facing up). Here's how to identify each pin:
Pin 1: This is usually the anode (+) of the internal LED. It's where you would input the signal that you want to isolate.
Pin 2: This is the cathode (-) of the internal LED. It's typically connected to ground on the input side.
For the transistor side, which is what you're asking about:
Pin 3 (Collector): When looking at the front of the optoisolator with the text facing you and the pins down, Pin 3 is the first pin on the left side. This pin is the collector of the phototransistor.
Pin 4 (Emitter): Still facing the text of the optoisolator with pins down, Pin 4 is right next to Pin 3, on the left as well. This pin is the emitter of the phototransistor.
It's important to consult the datasheet of the PC817C for the schematic symbol and pinout diagram to confirm the pin configuration and any specific characteristics of the device. The datasheet will typically provide a detailed description of each pin, its function, and the correct orientation for the device in your circuit.
10mo
Reformulare la pregunta anterior...con el 817c me ayudas a ahcer un corazon pal...
Por supuesto, puedo ayudarte a diseñar un circuito de "corazón palpitante" utilizando el optoacoplador PC817 y LEDs rojos. Aquí te propongo un diseño básico:
Componentes necesarios:
Optoacoplador PC817: 1 unidad
LEDs Rojos: dependiendo de la cantidad que quieras para tu corazón
Resistencias: necesitarás una para cada LED y una adicional para el optoacoplador
Un condensador electrolítico
Un transistor NPN (como el 2N3904)
Fuente de alimentación de 9V
Conexiones:
Para garantizar el parpadeo del LED (imitando un pulso de corazón), debemos crear un oscilador simple utilizando el optoacoplador PC817 y un transistor NPN.
Connect PC817:1 to power source
Connect PC817:2 to R1:1, where R1 is the limiting resistor for the optocoupler's internal LED
Connect R1:2 to ground
Connect PC817:3 to transistor base through another resistor (R2:1)
Connect PC817:4 to power source
Connect transistor collector to power source
Connect transistor emitter to anode side of your LEDs through individual resistors (e.g., R3, R4, R5...:1 depending on the number of LEDs you have)
Connect cathode side of your LEDs to ground
To control the rate of pulsing of the LEDs, connect a capacitor (C1) between PC817:3 (R2:2) and ground
Recuerda que para que los LED parpadeen de forma similar a un corazón, puedes ajustar el valor del condensador para cambiar la frecuencia de los pulsos. En cuanto a los valores de las resistencias y del condensador, dependen de las especificaciones de tus LEDs y de la fuente de alimentación que estés utilizando.
Por último, es importante recordar que este es un diseño básico y podrías necesitar hacer ajustes basándote en las especificaciones exactas de tus componentes y tus necesidades específicas.
Ten en cuenta que asumí que estás familiarizado con la soldadura y otras técnicas de construcción de circuitos. Si necesitas más detalle acerca de cómo ensamblar los componentes o si prefieres un diseño diferente (disposición de los componentes, por ejemplo), no dudes en preguntar.
11mo
con el 817 me ayudas a ahcer un corazon palpitante utilizando una fuente de 9 V?
¡Claro! Para crear un circuito que simule un corazón latiendo, puedes utilizar un oscilador astable basado en un circuito 555 IC, el optoacoplador PC817C, resistencias, un condensador y LEDs.
Aquí está una descripción del circuito:
Primero, conecta el pin 8 del IC 555 al positivo (9V) de la fuente de alimentación.
Conecta el pin 1 del IC 555 al negativo (masa) de la fuente de alimentación.
Conecta una resistencia (digamos, R1) entre los pin 7 y 8 del IC 555.
Conecta otra resistencia (digamos, R2) entre los pin 6 y 7 del IC 555.
Conecta un condensador (digamos, C1) desde el pin 6 del IC 555 al negativo (masa) de la fuente de alimentación.
Conecta una resistencia (digamos, R3) entre el pin 3 del IC 555 y el pin 1 del PC817C.
Conecta el pin 2 del PC817C al negativo (masa) de la fuente de alimentación.
Conecta el pin 4 del PC817C a través de una carga (el LED que simula el latido del corazón) al positivo (9V) de la fuente de alimentación. Y también al pin 3 del IC 555 a través de una resistencia (digamos, R4).
Finalmente, conecta el pin 3 del PC817C al negativo (masa) de la fuente de alimentación.
Esto debería darte el efecto "corazón latiendo" deseado. Recuerda que puedes ajustar la velocidad de "latidos" ajustando los valores de las resistencias y del condensador.
Asegúrate de verificar la polaridad de los LEDs y del condensador antes de conectarlos, y asegúrate de que la corriente que pasa a través del LED no exceda su máximo nominal para evitar quemarlo.
Además, debido a que este circuito es solo un diagrama de sugerencias, puede que no funcione como se esperaba debido a las variaciones en los componentes individuales o en la fuente de alimentación. Si tu proyecto no funciona como se esperaba, te sugeriría que pruebes con diferentes valores para R1, R2 y C1 hasta que consigas el efecto de latido del corazón que buscas.
PC817C is an optoisolator transistor output with 5000Vrms from Taiwan Semiconductor Corporation. The optocoupler provides isolation between input and output circuits. The current transfer ratio (CTR) of the PC817C ranges from 50% to 600%, depending on the exact variant.
However, the current rating is not directly implied by the CTR. The PC817C typically accepts a forward input voltage of 1.2V with a forward current of 50 mA on the input side (LED). The collector-emitter breakdown is around 80 V with a collector current of 50 mA on the output side (phototransistor).
Again, this typical values might vary based on the specific part variant used and the conditions it's used under. So always check the PC817C datasheet in your possession for the exact specifications.
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reach me at any time by tagging me on comments or in the chat with my handle, @copilot.
1y
Someone is typing...
Passive Components
Resistor Power Rating
Beta
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
jsuarezch
copilot