• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
C5
Capacitance
0.1u F
R2
Resistance
80k Ω
3V3
R6
Resistance
27 Ω
I2C_SCL
C3
Capacitance
15n F
C9
Capacitance
0.1u F
USB_D-
R3
Resistance
1k Ω
3V3
X1
Frequency
12M Hz
SPI_SCK
C12
Capacitance
0.1u F
VIN
J3
SPI_CS0
R8
Resistance
5.1K Ω
LoRa_RESET
VBAT
FAULT
J2
SPI_CS0
LoRa_DIO0
SPI_MOSI
STATUS
LoRa_DIO0
R4
Resistance
1k Ω
3V3
R7
Resistance
5.1K Ω
U4
VIN
FAULT
3V3
C2
Capacitance
10u F
I2C_SCL
+1V1
C4
Capacitance
1u F
USB_D-
I2C_SDA
3V3
XOUT
3V3
VBAT
U1
C8
Capacitance
22p F
USB_D+
LED2
C7
Capacitance
22p F
3V3
C6
Capacitance
0.1u F
3V3
R5
Resistance
27 Ω
I2C_SDA
STATUS
C1
Capacitance
0.1u F
R1
Resistance
28k Ω
NTC1
Resistance
10k Ω
U5
J1
XIN
VIN
SPI_SCK
SPI_MISO
SPI_MISO
USB_D+
U2
XOUT
USB_D+
C11
Capacitance
0.1u F
XIN
SPI_MOSI
+1V1
LoRa_RESET
LED1
3V3
+1V1
VBAT
VBAT
VIN
USB_D-
C10
Capacitance
0.1u F
U3

LoRa temperature sensor Reference Design

LoRa temperature sensor Reference Design
Description

Created
December 1st 2023
Last updated by vasyl
a year ago
1 Contributor(s)
vasyl

Controls

Availability & Pricing

DistributorQty 1
Digi-Key$3.42–$7.23
LCSC$2.54–$2.66
Mouser$26.30

Assets

    Thumbnail
  • thumbnail
    LoRa temperature sensor.png

    id=LoRa temperature sensor

  • LoRa temperature sensor_for Mr Mo.dxf

    id=LoRa temperature sensor_for Mr Mo

Simulation

µs

Simulation Speed

این پروژه رو برایمن توضیح بده
@copilot این پروژه رو برایمن توضیح بده
1mo
البته! این پروژه یک سنسور دمای LoRa است که از میکروکنترلر RP2040 به همراه سنسور دما SHT31 و ماژول RFM95 برای ارتباط LoRa استفاده می‌کند. کمی درباره اجزای کلیدی و عملکرد آن توضیح می‌دهم:

  1. میکروکنترلر RP2040: این تراشه ساخت Raspberry Pi است و دو هسته ARM دارد که برای وظایف محاسباتی و ارتباطی در پروژه‌های تعبیه‌شده کاربرد زیادی دارد.
  2. سنسور دما SHT31: این سنسور دما ساخت Sensirion AG است و با دقت بالا دما و رطوبت را اندازه‌گیری می‌کند و از طریق پروتکل I2C برای ارتباط با میکروکنترلر استفاده می‌شود.
  3. ماژول LoRa RFM95: برای ارتباط با بردهای دیگر با استفاده از فناوری LoRa که برای ارتباطات برد بلند و مصرف توان پایین طراحی شده است. این ماژول از طریق پروتکل SPI به میکروکنترلر متصل می‌شود.
  4. منابع تغذیه: مدار شامل رگولاتور ولتاژ AP2112K-3.3TRG1 است که ولتاژ ورودی را به 3.3 ولت برای تغذیه قطعات مدار تنظیم می‌کند.
  5. کانکتورها و پین‌هد: شامل J3 و J1 که برای ارتباطات و تغذیه خارجی استفاده می‌شوند.
این پروژه به گونه‌ای طراحی شده است که به عنوان یک مرجع ساده برای توسعه‌های آینده در حوزه سنسورهای LoRa عمل کند، و با مجوز ترجیحی به اشتراک گذاشته شده است تا توسعه‌دهندگان دیگر به راحتی بتوانند از آن در پروژه‌های خود استفاده کنند. آیا توضیحات بیشتری در مورد بخش خاصی از این پروژه نیاز دارید؟
1mo
explain this project.
@copilot explain this project.
3mo
This project involves designing a LoRa temperature sensor. Here’s a breakdown of the key elements and components:
Purpose

  • The project aims to create a temperature sensor module that utilizes LoRa communication to send temperature data wirelessly.
Microcontroller

  • RP2040: A microcontroller from Raspberry Pi, responsible for managing the sensor and communication tasks.
Temperature Sensor

  • SHT31: A high-accuracy temperature and humidity sensor by Sensirion AG.
LoRa Module

  • RFM95: This module is used for LoRa communication, allowing long-range data transmission to a LoRaWAN base station or a similar receiver.
Power Management

  • Voltage Regulator (AP2112K-3.3TRG1): Provides a stable 3.3V power supply for the circuit.
Additional Components

  • Resistors and Capacitors: These are used throughout the circuit for various purposes such as filtering, pull-up/pull-down resistors, etc.

    • Notable resistors include R1 $28 , \text{k}\Omega$, R2 $80 , \text{k}\Omega$, and R6 $27 , \Omega$.
    • Capacitors like C1 $0.1 , \mu \text{F}$, C3 $15 , \text{nF}$, and C9 $0.1 , \mu \text{F}$ are used for power stabilization and signal smoothing.
Connectors

  • J1: A USB Type-C connector for power and possibly data connections.
  • J3: A 2-pin connector for interfacing with external peripherals or power inputs.
Communication Interfaces

  • I2C: Used to communicate between the RP2040 and the SHT31 temperature sensor.
  • SPI: Used for communication with the RFM95 module for LoRa transmissions.
Key Nets

  • Power Nets: 3V3, VIN, VBAT, +1V1 for powering various components.
  • Data Nets: I2C_SCL, I2C_SDA, SPI_SCK, SPI_MISO, SPI_MOSI, which are used for serial communications.
Functional Overview

  1. Data Acquisition: The SHT31 sensor measures temperature and humidity.
  2. Data Processing: The RP2040 reads the sensor data using the I2C interface.
  3. Data Transmission: The processed data is sent via the RFM95 LoRa module using the SPI interface.
Conclusion
This circuit design leverages a robust microcontroller and industry-standard components to create a reliable, remote temperature monitoring system with wireless data communication capability via LoRa. The use of inexpensive and readily available components ensures both cost-effectiveness and ease of repeatability.
3mo
what is the power draw
2mo
crea un circuito de luz led tipo estrobo
@copilot crea un circuito de luz led tipo estrobo
4mo
Para crear un circuito de luz LED tipo estrobo, necesitas los siguientes componentes básicos:
Componentes:

  • LEDs: Al menos uno, pero puedes usar más dependiendo de cuánto brillo desees.
  • Resistencias: Para limitar la corriente que pasa por los LEDs.
  • Transistor: Para controlar el encendido y apagado rápido del LED.
  • 555 Timer IC: Este se usará para generar las pulsaciones necesarias para el efecto de estrobo.
  • Capacitores: Para filtrar y estabilizar la señal.
  • Fuente de Alimentación: Adecuada para los LEDs y el circuito (puede ser una batería de 9V o similar).
Esquema Básico:

  1. Configuración del 555 Timer IC en modo astable:

    • El 555 Timer se configurará para generar una señal de onda cuadrada, que encenderá y apagará el LED.
    • Conecta el pin 1 a GND.
    • Conecta el pin 8 y pin 4 a VCC (normalmente entre 4.5V y 15V).
    • Conecta un capacitor entre el pin 2 y GND, y conecta un resistor entre el pin 2 y el pin 6.
    • Conecta un segundo resistor entre el pin 6 y VCC.
    • Conecta un capacitor entre el pin 5 y GND (normalmente 10nF).
    • Conecta el pin 7 entre los dos resistores.
  2. Control del LED:

    • Conecta el pin 3 del 555 Timer a la base de un transistor.
    • Conecta el emisor del transistor a GND.
    • Conecta el colector del transistor a un extremo de una resistencia.
    • Conecta el otro extremo de la resistencia al cátodo del LED.
    • Conecta el ánodo del LED a VCC.
Consideraciones:

  • Calculo del periodo de parpadeo: La frecuencia del parpadeo está definida por los valores de los resistores y el capacitor en el circuito del 555 Timer. La frecuencia $f$ se calcula como: f=1.44(R1+2R2)C1f = \frac{1.44}{(R_1 + 2R_2)C_1} Donde $R_1$ y $R_2$ son resistencias conectadas al 555, y $C_1$ es el capacitor entre el pin 2 y GND.
  • Valor de Resistencia para el LED: Asegúrate de calcular correctamente la resistencia para el LED según la fórmula: R=VccVLEDILEDR = \frac{V_{cc} - V_{LED}}{I_{LED}} donde VccV_{cc} es la tensión de la fuente, VLEDV_{LED} es la caída de tensión del LED, e ILEDI_{LED} es la corriente deseada a través del LED.
Si deseas que te ayude con cálculos específicos adicionales o el diseño, ¡hazmelo saber!
4mo
explain this project.
@copilot explain this project.
5mo
This project is a LoRa temperature sensor design. It integrates an RP2040 microcontroller, a SHT31 temperature sensor, and an RFM95 LoRa module to allow for LoRa-based remote temperature sensing.
Key Components
Here are the main components involved:

  • Microcontroller (RP2040):

    • Core component responsible for system control and data processing.
    • Provides interfaces for I/O and communication.
  • Temperature Sensor (SHT31):

    • Measures temperature and humidity.
    • Uses I2C for communication.
  • LoRa Module (RFM95W-868S2):

    • Enables long-range wireless communication.
  • Voltage Regulator (AP2112K-3.3TRG1):

    • Converts incoming voltage to 3.3V for supplying the microcontroller and peripherals.
  • Connector (TYPE-C-31-M-12):

    • USB Type-C connector for power supply or communication.
Power Rails
The project uses multiple power rails:

  • VIN: Main input voltage, connected to the USB VBUS and other components requiring 5V.
  • 3V3: 3.3V regulated supply powering most of the components.
  • VBAT: Battery voltage input, connected directly to the battery and related circuits.
  • GND: Common ground for all components.
Communication Interfaces

  • I2C: Used to communicate with the SHT31 temperature sensor (U1).

    • Pins: SCL (clock) and SDA (data).
  • SPI: Used for LoRa communication with the RFM95 module (U3).

    • Pins: SCK (Clock), MOSI (Master Out Slave In), MISO (Master In Slave Out), NSS (Chip Select).
Notable Nets

  • Net 25: Connecting SPI chip select pins.
  • Net 18: Connecting the crystal oscillator required for generating the system clock of the RP2040.
  • Net 4: Power distribution from the main voltage input to various components.
  • Net 19 & Net 21: Handling USB data lines for communication.
Capacitors and Resistors Connectors

  • J1: USB Type-C connector used for power input.
  • J3: For battery connection.
Potential Improvements
If you need to make any modification or add further features in the project, here are some suggestions:

  • Power Management: Add a low-dropout regulator if higher efficiency power conversion is required.
  • Enhanced Protection: Utilize TVS diodes for input protection from voltage spikes.
  • Testing Points: Add test points to facilitate debugging.

Feel free to ask more specific questions or provide details on areas you'd like to analyze further.
5mo
design wireless switch using 433mhz module and atmega328
@copilot design wireless switch using 433mhz module and atmega328
5mo
rp2040
rp2040
11mo
can you write me a short(100-200 symbols) description for this project
@copilot can you write me a short(100-200 symbols) description for this project
1y
This project is a LoRa temperature sensor. It uses the RP2040 microcontroller (U2) and a SHT31 temperature sensor (U1). Connectivity is addressed via the RFM95W LoRa transceiver (U3) and USB Type-C connector (J1). The board is powered using a USB Type-C connection and includes an AP2112K voltage regulator (U4).
1y
Hey, I’m Copilot, your AI design assistant. I can help you brainstorm ideas, deb...
Hey, I’m Copilot, your AI design assistant. I can help you brainstorm ideas, debug problems, research components, and even make wiring connections for you. Ask me questions like:

  • @copilot I'm designing a PCB for a medical device that measures heart rate and temperature. Can you give me the list of components I will need?
  • @copilot How would I connect these parts to make the LED flash at 1kHz?
  • @copilot can you choose 4 digital pins on the ATMega328P-AU that I have here to use as GPIO given that I am already using some pins for reset, the external clock, UART, and I2C.
Chat with me by tagging @copilot on comments or in the chat.
1y
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Designator
Ruleset
*`REF`*
C7
*`REF`*
C2
*`REF`*
R6
*`REF`*
R5
*`REF`*
C9
*`REF`*
R1
*`REF`*
C4
*`REF`*
C12
*`REF`*
R7
*`REF`*
C8
*`REF`*
C10
*`REF`*
X1
*`REF`*
R2
*`REF`*
C11
*`REF`*
C1
*`REF`*
J1
*`REF`*
U1
Designators
Net
P1, GND
GND
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.