• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600 pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
GND
A1
MISO
4/A6
13(PWM)
10(PWM)/A10
5(PWM)
7
AREF
0/RX
6(PWM)/A7
SCK
MOSI
RESET
8/A8
A0
RX_LED/SS
11(PWM)
2/SDA
3(PWM)/SCL
12/A11
A5
VIN
1/TX
A4
3.3V
A3
+5V
GND__1
9(PWM)/A9
A2
RESET__1

Arduino Micro

Arduino Micro
Description

Created
November 4th 2022
Last updated by vasyl
2 years ago
2 Contributor(s)
vasyl
jharwinbarrozo

Controls

Properties

Part Type
Evaluation Boards
Manufacturer Name
Arduino
Manufacturer Part Number
Arduino Micro
Designator Prefix
U

Availability & Pricing

No results found.

Assets

    Default
  • thumbnail
    A000053

    id=default

  • Footprint
  • ok.kicad_mod

    id=Footprint_V5

  • 3d Model
  • ARDUINO MICRO.STEP

    id=3D

  • Thumbnail
  • thumbnail
    A000053.png

    id=A000053

Simulation

µs

Simulation Speed

puedes hacer el esquema?
puedes hacer el esquema?
1y
how i insert a component
@copilot how i insert a component
1y
To insert a component in Flux, follow these steps:

  1. Open your project in Flux.
  2. Click on the Components section in the left-hand side toolbar.
  3. In the components section, you will see a list of libraries that contain various components. You can browse through these libraries or use the search bar at the top of the components section to find a specific component.
  4. Once you've found the component you want to use, click on it and drag it into your schematic.
  5. Release your mouse button to place the component on the schematic. You can then click and drag the component to move it, or click on it and use the properties panel on the right-hand side to modify its properties.
Remember to save your project after making changes.
1y
If I have a atmega32u4 chip, what do I need to connect to the chip in order to use it?
1y
To use an ATmega32U4 chip, there are several connections you should make to ensure it functions properly:

  1. Power Supply: Connect VCC to a +5V supply, and ground all GND pins. If you're using a high frequency (above 10 MHz), connect AVCC to +5V supply as well, and connect AGND to ground.
  2. Decoupling Capacitors: It is recommended to connect a 100nF capacitor between VCC and GND, and AVCC and AGND (if applicable) close to the chip to filter out high-frequency noise on the power supply.
  3. Reset Circuit: Connect a 10k ohm resistor between the RESET pin and VCC. This is a pull-up resistor. Also, connect a small capacitor (like 1uF) between the RESET pin and GND to suppress noise.
  4. Clock Circuit: If you're not using an internal clock, connect a crystal oscillator or ceramic resonator to XTAL1 and XTAL2 pins. Connect ground to the crystal's outer casing, and connect two 22pF capacitors from XTAL1 and XTAL2 to ground.
  5. USB interface: If you want to communicate with the chip via USB, connect the D+ and D- pins to the D+ and D- lines of the USB connector respectively. Also, you would need to connect a 22 ohm resistor in series with each of the D+ and D- lines and a 1uF capacitor to the UCap pin.
  6. Bootloader: To program the chip, you'll need a bootloader. The Arduino bootloader can be used. You could use an In-System Programmer (ISP) for this task.
  7. LEDs: Connect an LED (with a suitable series resistor) to the PB7 (Arduino digital pin 13) to monitor the status of the chip. Also, Rx and Tx LEDs can be connected to the PD5 and PD4 respectively for serial communication status.
  8. I/O Pins: ATmega32U4 has a number of general purpose I/O pins that can be used for interfacing with other devices or modules as per your project needs.
Note: Please refer to the ATmega32U4 datasheet for more specifics and detailed information.
1y
give me the schemetic of arduino pro micro
1y
I'm sorry for any confusion, but as an AI developed by OpenAI, I don't have the ability to directly provide images or schematic diagrams.
However, I can tell you where to find it: the schematic for the Arduino Pro Micro, which uses the Atmega32U4 chip, can be found on the Arduino website or on the SparkFun website, which is the manufacturer of the Pro Micro.
Please follow these steps:

  1. Go to the SparkFun website.
  2. Search for "Pro Micro".
  3. Click on the product page.
  4. Scroll down to the "Documents" section.
  5. Click on the "Schematic" link to access the schematic.
Please note that you will need a software that can open .sch files (like Eagle or KiCad) to view the schematic.
For a more simplified schematic that you can view directly in your browser, I would recommend searching for "Arduino Pro Micro pinout" in an internet search engine. This will provide you with images that show all of the pin connections on the Pro Micro.
1y
@copilot se puede hacer un dataloguer que funcione con bateria de litio con aduino micro?
1y
Sí, es posible construir un datalogger con un Arduino Micro que funcione con una batería de litio. Aquí tienes una descripción general de cómo podrías hacerlo:
Materiales necesarios:

  1. Arduino Micro
  2. Módulo de tarjeta SD
  3. Batería de litio
  4. Cargador de batería de litio
Pasos a seguir:

  1. Conexión del Módulo SD: Conecta el módulo SD a tu Arduino. Los módulos SD generalmente tienen una interfaz SPI, así que necesitarás conectar los pines MOSI, MISO, SCK y CS del módulo SD a los pines correspondientes en tu Arduino.
  2. Conexión de la Batería: Puedes conectar la batería de litio al Arduino Micro a través del pin de alimentación RAW. Sin embargo, asegúrate de que el voltaje de la batería sea compatible con el Arduino (la batería debería tener un voltaje de entre 3.3V y 12V).
  3. Cargador de Batería: Si quieres poder recargar tu batería de litio, necesitarás incorporar un cargador de batería en tu proyecto. Puedes encontrar módulos de cargador de batería de litio que puedes conectar a tu Arduino y a la batería. Algunos incluso cuentan con un circuito de protección para prevenir que la batería se descargue demasiado.
  4. Código para el Datalogger: Necesitarás escribir un código para leer los datos de los sensores que estás utilizando, escribir estos datos en la tarjeta SD y gestionar el estado de la batería. La biblioteca SD de Arduino puede ser útil para escribir datos en la tarjeta SD.
Por último, es esencial tener en cuenta el consumo de energía de tu proyecto. Puedes usar varias técnicas para reducir el consumo de energía, como poner el Arduino en modo de suspensión cuando no esté recogiendo o escribiendo datos, o usar un sensor de corriente para monitorear el nivel de la batería.
Source(s):
1y
Someone is typing...