• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
quiero un circuito que controle 2 motores con radiofrecuencia

@copilot quiero un circuito que controle 2 motores con radiofrecuencia
9mo
Para controlar dos motores por radiofrecuencia (RF), necesitas algunos componentes clave, incluyendo un módulo de RF, un microcontrolador y un driver de motores. Aquí tienes una lista de componentes y cómo podrías conectarlos:
Componentes
  1. Transmisor RF (p.ej. nRF24L01)
  2. Receptor RF (p.ej. nRF24L01)
  3. Microcontrolador (p.ej. Arduino, ESP32, etc.)
  4. Driver de motor (p.ej. L298N)
  5. Motores DC (2 motores)
  6. Fuente de alimentación adecuada para los motores y el circuito
  7. Capacitores, resistores y cables de interconexión
Conexiones
  • Módulo Transmisor RF
    1. Conéctalo a tu controlador (un segundo microcontrolador o una unidad de hardware dedicada para el control remoto).
  • Microcontrolador con Módulo Receptor RF
    • Conecta VCC del módulo RF a 5V/3.3V del microcontrolador.
    • Conecta GND del módulo RF a GND del microcontrolador.
    • Conecta CE del módulo RF a un pin digital del microcontrolador (p.ej. D7).
    • Conecta CSN del módulo RF a otro pin digital (p.ej. D8).
    • Conecta SCK del módulo RF a SCK del microcontrolador.
    • Conecta MOSI del módulo RF a MOSI del microcontrolador.
    • Conecta MISO del módulo RF a MISO del microcontrolador.
  • Microcontrolador con Driver de Motor (L298N)
    • Conecta ENA a un pin PWM (p.ej. D5 del Arduino).
    • Conecta IN1 a un pin digital (p.ej. D2 del Arduino).
    • Conecta IN2 a un pin digital (p.ej. D3 del Arduino).
    • Conecta IN3 a otro pin digital (p.ej. D4 del Arduino).
    • Conecta IN4 a otro pin digital (p.ej. D6 del Arduino).
    • Conecta ENB a otro pin PWM (p.ej. D9 del Arduino).
    • Conecta OUT1 y OUT2 a las terminales del primer motor.
    • Conecta OUT3 y OUT4 a las terminales del segundo motor.
    • Conecta 12V a la fuente de alimentación del motor.
    • Conecta GND a la tierra común.
Ejemplo de Conexiones Específicas:
  • Conectemos los pines del módulo RF y el microcontrolador (asumiendo un Arduino Uno):
    • Módulo RF
      • Conecta VCC a 3.3V del Arduino.
      • Conecta GND a GND del Arduino.
      • Conecta CE a D7 del Arduino.
      • Conecta CSN a D8 del Arduino.
      • Conecta SCK a D13 del Arduino.
      • Conecta MOSI a D11 del Arduino.
      • Conecta MISO a D12 del Arduino.
  • Conectemos el driver del motor (L298N) al microcontrolador (Arduino Uno):
    • Motor A
      • Conecta ENA a D5 del Arduino.
      • Conecta IN1 a D2 del Arduino.
      • Conecta IN2 a D3 del Arduino.
      • Conecta OUT1 a una terminal del primer motor.
      • Conecta OUT2 a la otra terminal del primer motor.
    • Motor B
      • Conecta ENB a D9 del Arduino.
      • Conecta IN3 a D4 del Arduino.
      • Conecta IN4 a D6 del Arduino.
      • Conecta OUT3 a una terminal del segundo motor.
      • Conecta OUT4 a la otra terminal del segundo motor.
Código Ejemplo para el Controlador
En el caso del microcontrolador Arduino, aquí tienes un esbozo de código para recibir señales del módulo RF y controlar los motores:

Cpp


#include 
#include 
#include 

const int motorA_ENA = 5;
const int motorA_IN1 = 2;
const int motorA_IN2 = 3;
const int motorB_ENB = 9;
const int motorB_IN3 = 4;
const int motorB_IN4 = 6;

RF24 radio(7, 8); // CE, CSN
const byte address[6] = "00001";

struct MotorData {
    int motorA_speed;
    int motorA_direction;
    int motorB_speed;
    int motorB_direction;
};

MotorData data;

void setup() {
    Serial.begin(9600);
    radio.begin();
    radio.openReadingPipe(0, address);
    radio.setPALevel(RF24_PA_MIN);
    radio.startListening();

    pinMode(motorA_ENA, OUTPUT);
    pinMode(motorA_IN1, OUTPUT);
    pinMode(motorA_IN2, OUTPUT);
    pinMode(motorB_ENB, OUTPUT);
    pinMode(motorB_IN3, OUTPUT);
    pinMode(motorB_IN4, OUTPUT);
}

void loop() {
    if (radio.available()) {
        radio.read(&data, sizeof(data));

        // Motor A control
        analogWrite(motorA_ENA, data.motorA_speed);
        digitalWrite(motorA_IN1, data.motorA_direction);
        digitalWrite(motorA_IN2, !data.motorA_direction);
        
        // Motor B control
        analogWrite(motorB_ENB, data.motorB_speed);
        digitalWrite(motorB_IN3, data.motorB_direction);
        digitalWrite(motorB_IN4, !data.motorB_direction);
    }
}
Resumen de Conexiones:
  1. Módulo RF
    • Conecta VCC del módulo RF a 3.3V del Arduino.
    • Conecta GND del módulo RF a GND del Arduino.
    • Conecta CE del módulo RF a D7 del Arduino.
    • Conecta CSN del módulo RF a D8 del Arduino.
    • Conecta SCK del módulo RF a D13 del Arduino.
    • Conecta MOSI del módulo RF a D11 del Arduino.
    • Conecta MISO del módulo RF a D12 del Arduino.
  2. Driver de motor (L298N)
    • Conecta ENA a D5 del Arduino.
    • Conecta IN1 a D2 del Arduino.
    • Conecta IN2 a D3 del Arduino.
    • Conecta OUT1 a una terminal del primer motor.
    • Conecta OUT2 a la otra terminal del primer motor.
    • Conecta ENB a D9 del Arduino.
    • Conecta IN3 a D4 del Arduino.
    • Conecta IN4 a D6 del Arduino.
    • Conecta OUT3 a una terminal del segundo motor.
    • Conecta OUT4 a la otra terminal del segundo motor.
Con estas conexiones y el código proporcionado, deberías poder controlar dos motores mediante señales recibidas por radiofrecuencia. Si necesitas ayuda adicional o tienes alguna otra preferencia de componentes, ¡dímelo!
9mo
Someone is typing...
explain this project.

@copilot explain this project.
9mo
This project involves the design of a schematic for SK6812MINI-E addressable RGB LEDs. These particular LEDs are small, surface-mount devices (SMD) that are intelligent and externally controllable. Each LED requires a power supply (VDD), ground (GND), a data input (DIN), and data output (DOUT) for the control signal. The design aims to incorporate these LEDs into an electronic circuit where individual LEDs can be controlled separately, allowing for the creation of complex lighting effects and patterns.
The project components are labeled with designators indicating their function in the circuit:
  • DIN (Designator Prefix: P, Pin Number: 4): This is the data input pin for the LED, through which control signals are received. It's used to dictate the color and brightness of the LED.
  • VDD (Designator Prefix: P, Pin Number: 1): This is the power supply pin for the LED. It powers the LED.
  • DOUT (Designator Prefix: P, Pin Number: 2): This is the data output pin of the LED. It allows the control signal to be passed from one LED to the next in a series, enabling the control of multiple LEDs in a chain.
  • GND (Designator Prefix: P, Pin Number: 3): This is the ground pin for the LED, completing the circuit.
No electrical connections have been specified yet, meaning that while the components and their respective pins are defined, how they're interconnected to form a functional circuit hasn't been detailed. Typically, for addressable RGB LEDs like the SK6812MINI-E, you would chain them together by connecting DOUT of one LED to DIN of the next, with VDD and GND lines paralleled across the LEDs and connected to a suitable power supply. Data input for the first LED in the chain would come from a suitable controller (like a microcontroller) capable of generating the specific data signals required to control the color and brightness of each LED individually.
Given this project's properties, it also references the OPSCO Optoelectronics manufacturer and is under a Creative Commons Attribution 4.0 International License, according to the provided URL. The designation prefix "LED" for other components that might be added later suggests a focus on LED-based designs or additional LED components expected to be part of the schematic.
9mo
Someone is typing...
2
DIN
VDD
DOUT
GND

SK6812MINI-E

SK6812MINI-E
Description

Created
Last updated by vasy_skral
1 Contributor(s)
vasy_skral

Controls

Properties

Part Type
LED
Manufacturer Name
OPSCO Optoelectronics
Manufacturer Part Number
SK6812MINI-E
Designator Prefix
LED

Availability & Pricing

DPNStockQty 1
1136K$0.0771

Assets

Simulation

µs

Simulation Speed

Welcome to the all-new Copilot

Use Copilot to search the library, place and connect components, and more. Click to start a new thread or select a prompt below to start. Learn More

Flux Copilot Video TutorialPlay Video
Explain
Write Project Description
Find Issues
Test Plan
Operating Conditions
Recommend Similar Parts
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports components that have been modified using the "!important" flag.
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.