• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
L1
Inductance
33u H
D1
VOUT
+5V
R2
Resistance
1k Ω
+5V
+5V
C3
Capacitance
470u F
U1
R1
Resistance
3.0k Ω
C1
Capacitance
1.2n F

LM2596 Buck converter 5V

LM2596 Buck converter 5V
Description

Created
November 15th 2023
Last updated by vasy_skral
a year ago
1 Contributor(s)
vasy_skral

Controls

Properties

Availability & Pricing

DistributorQty 1
Digi-Key$1.89–$3.76
LCSC$2.96
Mouser$3.70

Assets

  • thumbnail
    LM2596-removebg-preview.png

    id=LM2596-removebg-preview

  • Thumbnail
  • thumbnail
    LM2596 Buck converter 5V-removebg-preview.png

    id=LM2596 Buck converter 5V-removebg-preview

Simulation

µs

Simulation Speed

Would I need to make any changes to the schematic if I wanted to use the LM2596H...
@copilot Would I need to make any changes to the schematic if I wanted to use the LM2596HVS-5.0, power it with 48V, and have 5V on the output?
4d
To adapt your current schematic for use with the LM2596HVS-5.0, which is suitable for higher input voltages (up to 60V), there are a few things to consider regarding your components and connections:
Considerations and Potential Changes:

  1. Input Capacitor (C2):

    • Ensure the voltage rating of C2C2 is sufficient to handle 48V. A typical recommendation is to have at least a 63V rated capacitor for extra safety margin.
  2. Diode (D1):

    • Check the reverse voltage rating of D1D1. The current diode, PDS760-13, has a reverse voltage rating of 60V, which should be acceptable, but ensure that this is sufficient based on your specific application and transient voltage spikes.
  3. Inductor (L1):

    • The current inductor L1L1 with 33µH is likely to still be appropriate for the new input conditions, but you should verify the saturation current rating to ensure it handles the peak currents.
  4. Output Capacitor (C3):

    • You should verify that the ESR and ripple current ratings of C3C3 can support the new configuration.
  5. Additional Components or Configuration:

    • Review the LM2596HVS-5.0 datasheet for any additional components that may be recommended for high-voltage operation or any differences in compensation networks.
  6. Feedback Network (R1, R2):

    • The LM2596HVS-5.0 is a fixed 5V regulator, so the feedback network of R1R1 and R2R2 used with adjustable versions might not be required. Review the datasheet to confirm how connections may differ for a fixed output version.
Suggested Connections for New Components:

  • Ensure that the pin out and connections for the LM2596HVS-5.0 remain compatible with your current layout. You might need to adjust only the component selection rather than the connections.
Make sure to consult the LM2596HVS-5.0 datasheet thoroughly to verify all the above points! Would you like more details on any specific part of this design modification?
4d
can you redesign my schematic?
4d
Certainly! Let's redesign your schematic to accommodate the LM2596HVS-5.0 for a 48V input and 5V output.
Updated Schematic Design:

  1. Power Input:

    • Change: Verify if the existing input connector (VIN) can handle 48V. Ensure that any connector and cable used are rated for 48V.
  2. Input Capacitor (C2):

    • Change: Ensure the input capacitor, C2, has a voltage rating of at least 63V. Replace if necessary.
  3. Buck Converter IC:
  4. Schottky Diode (D1):

    • Check: Confirm the PDS760-13 diode's reverse voltage rating (60V) is sufficient for your application.
  5. Inductor (L1):

    • Verify: Ensure the inductor's saturation current and ripple current ratings are appropriate for the design. The inductance value of 33µH should remain suitable.
  6. Output Capacitor (C3):

    • Verify: Ensure the C3 has the correct voltage rating (typically more than 10V) and suitable ripple current rating for your output conditions.
  7. Feedback and Output Network:

    • Fixed output versions of the LM2596 don't require adjustable feedback resistors (R1 and R2) used in adjustable configurations. You can remove or bypass the feedback potential divider network unless otherwise specified in the datasheet.
  8. Connections:

    • Connect VIN to U1:VIN
    • Connect U1:OUT to L1:P1
    • Connect L1:P2 to C3:P1, VOUT:P1, and +5V:P1
    • D1:K should connect to Net 2.
    • Connect GND to all necessary ground pins.
  9. Optional:

    • A soft-start or enable control line could be considered, using U1:ON/OFF and ON/OFF to prevent high inrush current during startup.
With these modifications, your schematic should be well-suited for converting 48V to 5V using the LM2596HVS-5.0. Feel free to ask if you need clarification on any part or further help with simulation or validation!
4d
Would I need to make any changes to the schematic if I wanted to use the LM2596H...
@copilot Would I need to make any changes to the schematic if I wanted to use the LM2596HVS-5.0, power it with 48V, and have 5V on the output?
4d
why don't we connect FB pin directly to 5V instead of using 2 resistor R1 and R2...
@copilot why don't we connect FB pin directly to 5V instead of using 2 resistor R1 and R2?
8d
Why do I get 6.8V on VOUT instead of 5V?
@copilot Why do I get 6.8V on VOUT instead of 5V?
16d
There are several potential reasons why the output voltage is higher than expected. Let's go through a checklist to debug the issue:

  1. Feedback Network Configuration: The feedback network is crucial for setting the output voltage. Based on the typical configuration for the LM2596 adjustable version, the output voltage is set using the following equation: VOUT=VREF(1+R1R2)V_\text{OUT} = V_\text{REF} \left(1 + \frac{R1}{R2}\right) where $ V_\text{REF} $ is typically 1.23V for the LM2596.
    Given your resistor values, R1 is 3kΩ and R2 is 1kΩ. This gives: VOUT=1.23(1+30001000)=1.23×4=4.92VV_\text{OUT} = 1.23 \left(1 + \frac{3000}{1000}\right) = 1.23 \times 4 = 4.92 \, \text{V}
    But because you are getting 6.8V, there might be an issue with these resistors. Double-check their values and solder joints to see if R1 or R2 is incorrect or poorly connected.
  2. Feedback Pin (FB) Connection: Make sure that U1:FB is correctly connected to the junction between R1 and R2 as per the description:
  3. Inductor and Diode Configuration: Ensure the inductor L1 and the diode D1 are placed correctly in the circuit, specifically:
  4. Load Conditions: Ensure the circuit is not under no-load or very light load conditions, as this can affect the voltage regulation.
  5. Component Damage: Verify all components are functioning as expected and not damaged.
Check these areas and let me know if the issue persists or if you've found any anomalies!
16d
L7805 12v to 5v
1mo
hola
8mo
¡Hola! ¿Cómo puedo ayudarte hoy con tu proyecto de diseño electrónico?
8mo
quiero saber sobre este circuito, cual es su voltaje maximo de entrada y voltaje de salida
8mo
Este proyecto se basa en el LM2596, un regulador de voltaje tipo buck (reductor) que puede convertir un voltaje de entrada más alto a un voltaje de salida más bajo y regulado. Según las especificaciones típicas del LM2596:

  • Voltaje máximo de entrada: El LM2596 puede manejar un voltaje de entrada hasta 40V40V.
  • Voltaje de salida: En este proyecto, el voltaje de salida está configurado para ser de 5V5V, basado en la inclusión de los nodos de alimentación +5V5V en el diseño. Este valor de salida se determina por los componentes externos al LM2596, específicamente por la relación de los valores de resistencia de R1R1 y R2R2, y los componentes de filtrado (capacitores e inductor).
En resumen, este diseño está configurado para reducir un voltaje de entrada de hasta 40V40V a un voltaje de salida regulado de 5V5V. Es importante destacar que el voltaje de entrada real que se debe aplicar deberá ser mayor que 5V5V para que el circuito opere correctamente como un reductor, y deberá mantenerse dentro de los límites seguros especificados por el fabricante del IC para evitar dañar el componente.
8mo
dame los detalles de ese diodo zener y su funcion principal
8mo
El componente mencionado en el proyecto como "D1" tiene el MPN (Número de Parte del Fabricante) PDS760-13, pero parece que ha habido un pequeño malentendido. Según el número de parte proporcionado, el componente especificado es más probable que sea un diodo de barrera Schottky y no un diodo Zener. Los diodos Schottky, como el PDS760-13, tienen características y aplicaciones diferentes a las de los diodos Zener.
Para el diodo PDS760-13 en este contexto, aquí hay una explicación de sus características principales y cómo se utiliza típicamente en el circuito del LM2596:

  • Características del Diodo PDS760-13 (Asumiendo Schottky):

    • Corriente máxima: Típicamente superior a 1 A dependiendo de la especificación exacta.
    • Tensión directa baja: Los diodos Schottky tienen una tensión directa más baja que los diodos rectificadores estándar, lo cual es beneficioso para mejorar la eficiencia en aplicaciones de conmutación de potencia.
    • Recuperación rápida: Debido a su estructura, estos diodos tienen tiempos de recuperación muy rápidos, haciéndolos ideales para uso en circuitos de conmutación de alta frecuencia.
  • Función principal en el circuito LM2596:

    • Rectificación de Flyback: En un convertidor Buck como el basado en el LM2596, el diodo Schottky se utiliza para recircular la corriente durante el ciclo de apagado del switch interno del LM2596. Esto es crucial para el funcionamiento correcto del convertidor y ayuda a mantener la eficiencia al minimizar las pérdidas por disipación.
    • Protección contra el voltaje inverso: También previene que el voltaje inverso dañe el circuito al bloquear la corriente que intenta fluir en la dirección opuesta cuando el switch del LM2596 está apagado.
En resumen, el PDS760-13 es probablemente un diodo Schottky que desempeña un papel crítico en la eficiencia y la protección del convertidor buck LM2596, facilitando la recirculación de la corriente y evitando daños por voltaje inverso. Los detalles específicos como la corriente y el voltaje máximos dependerán de la hoja de datos del PDS760-13 específico, recomendándose consultarla para obtener detalles exactos.
8mo
la funcion de esa bobina? 33uh, puede ser de 47uh
8mo
La bobina (inductor) mencionada en tu proyecto, designada como "L1" con una inductancia de 33µH, desempeña un papel esencial en el funcionamiento del convertidor buck basado en el LM2596. Aquí te explico su función principal y luego hablo sobre el uso de un inductor de valor diferente como el de 47µH.
Función Principal de L1 (33µH)

  • Almacenamiento de Energía: En un convertidor tipo buck, el inductor almacena energía en su campo magnético durante la fase "on" del ciclo de conmutación, y libera esa energía al circuito de carga durante la fase "off". Esto es fundamental para suavizar el flujo de energía del input al output.
  • Limitación de la Corriente de Ripio (Ripple): Además, ayuda a limitar la corriente de ripio a través del circuito, mejorando así la estabilidad y eficiencia del voltaje de salida.
Uso de un Inductor de 47µH
Cambiar el inductor de 33µH por uno de 47µH afectaría tanto la eficiencia del convertidor como su respuesta dinámica. A continuación, algunos efectos de este cambio:

  • Menor Corriente de Ripio: Un inductor de mayor valor reducirá la corriente de ripio en el voltaje de salida, lo que puede resultar en una salida más estable y menos ruido.
  • Menor Respuesta Dinámica: Por otro lado, un inductor de mayor valor puede disminuir la respuesta dinámica del convertidor. Específicamente, podría reaccionar más lentamente a cambios rápidos en la carga o en el voltaje de entrada.
  • Potenciales Impactos en la Eficiencia: Además, la selección del inductor influye en la eficiencia del convertidor. Un inductor más grande puede incrementar las pérdidas por el efecto piel y pérdidas en el núcleo, potencialmente disminuyendo la eficiencia general del circuito.
Conclusión
Si bien es posible utilizar un inductor de 47µH en lugar de uno de 33µH, es importante tener en cuenta las posibles implicaciones que este cambio pueda tener en el rendimiento del convertidor DC-DC. Los valores de los componentes en estos circuitos no solo se eligen por sus características estáticas, como la inductancia, sino también por cómo estas características afectan el comportamiento dinámico y la eficiencia del sistema. Así que, dependiendo de tus necesidades específicas (por ejemplo, si necesitas una salida más limpia frente a una mejor respuesta dinámica), un inductor de 47µH podría ser una opción viable, pero con las consideraciones mencionadas.
8mo
El condensador c1 1.2nF, no lo encuentro disponible, podemos replazarlo por otro valor y cual seria
8mo
El condensador C1 en el circuito es de 1.2nF y suele formar parte del circuito de filtrado o compensación para el regulador LM2596, ayudando a estabilizar el voltaje de salida y mejorar el comportamiento transitorio del regulador. Al considerar un reemplazo debido a la indisponibilidad, es importante mantenerse lo más cerca posible de los valores recomendados por el fabricante para evitar afectar negativamente el rendimiento del circuito. Sin embargo, hay cierto margen para ajustar estos valores según la disponibilidad de los componentes y las necesidades específicas del diseño.
Sugerencia de Reemplazo
Un buen punto de partida es mirar los condensadores más cercanos en valor que estén disponibles. Típicamente, para aplicaciones como la estabilización del voltaje de salida y respuesta transitoria en reguladores de voltaje, un pequeño rango de valores alrededor del original puede ser aceptable.

  • Posible Reemplazo: Un valor cercano común es 1nF o 1.5nF. Asumiendo que la ecuación o las condiciones de diseño toleran una pequeña variación, estos podrían servir como reemplazos adecuados.
Consideraciones

  • 1nF: Puede ofrecer una respuesta ligeramente menos precisa que la proporcionada por 1.2nF en términos de compensación o filtrado, dependiendo de cómo se integre en el circuito.
  • 1.5nF: Aumentará un poco la compensación o filtrado en comparación con 1.2nF, lo que puede afectar la estabilidad o la respuesta transitoria, aunque en muchos casos, el impacto puede ser menor y dentro de límites aceptables.
Recomendación
Si debes elegir entre 1nF y 1.5nF debido a la indisponibilidad de 1.2nF, consideraría la opción más cercana al valor original, es decir, 1nF, para minimizar los cambios en el comportamiento del circuito. Sin embargo, si la aplicación es muy sensible a la estabilidad y respuesta del voltaje de salida, recomendamos experimentar con ambos valores si es posible y observar cuál produce los resultados más satisfactorios en tus pruebas específicas.
Resumen

  • Sugerencia de Reemplazo: C1 = 1nF (como primera opción) o 1.5nF.
  • Consideración: Verifica la estabilidad y la respuesta del sistema con el nuevo valor mediante simulación o prototipado, si es posible.
Es un buen enfoque basar estas modificaciones tanto en las recomendaciones generales como en pruebas específicas de tu aplicación para asegurar que el rendimiento del circuito sigue cumpliendo con tus requisitos.
8mo
afecta si no coloco el condensador?
8mo
No colocar el condensador C1 podría tener implicaciones significativas en el funcionamiento de tu circuito basado en el LM2596, dependiendo de su propósito específico dentro del diseño. Aquí hay un par de puntos clave para considerar:
Estabilidad

  • Compensación de lazo de realimentación: Si C1 forma parte de la red de compensación de lazo de realimentación del LM2596, omitirlo puede afectar la estabilidad del convertidor. Esta estabilidad es crucial para un funcionamiento correcto y sin oscilaciones indeseadas. La ausencia de este condensador puede llevar a una respuesta transitoria pobre, con sobrepicos o inestabilidad en la salida cuando la carga varía.
Ruido y Respuesta Transitoria

  • Filtrado de ruido: Los condensadores en el circuito de alimentación ayudan a filtrar el ruido de alta frecuencia y a mejorar la respuesta transitoria. Sin C1, puedes experimentar un aumento en el ruido de salida y una posible degradación en la calidad del voltaje de salida.
Eficiencia y Regulación

  • Regulación de voltaje: Aunque el efecto sobre la eficiencia puede no ser directo, la eliminación de componentes que contribuyen a la estabilidad y al filtrado puede afectar negativamente la regulación del voltaje de salida, especialmente bajo diversas condiciones de carga.
Seguridad del Componente

  • Protección de componentes: En algunos casos, los condensadores también juegan un papel en la protección de los componentes contra picos de voltaje y otros fenómenos eléctricos. Su ausencia podría, en teoría, exponer componentes a condiciones fuera de sus especificaciones.
Conclusión
Aunque los efectos pueden variar dependiendo del diseño específico del circuito y de cómo C1 estaba previsto que interactuara dentro del sistema, generalmente se recomienda no omitir componentes sin una evaluación detallada. Si C1 está diseñado para contribuir a la compensación, al filtrado de ruido, o a la estabilidad general del convertidor, su ausencia probablemente afectará negativamente el rendimiento.
Si te encuentras en una situación donde te falta un componente crítico como este, considera buscar un reemplazo cercano en valor o consultar el datasheet y las guías de diseño del LM2596 para opciones alternativas. En el diseño de circuitos electrónicos, cada componente suele tener un propósito definido, y su eliminación debería realizarse solo con un entendimiento completo de las consecuencias.
8mo
Quiero saber cual es el voltaje de entrada maximo y voltaje de salida de este ci...
Quiero saber cual es el voltaje de entrada maximo y voltaje de salida de este circuito
8mo
when do I use use thermal relief for the ground plane and when not to?
@copilot when do I use use thermal relief for the ground plane and when not to?
11mo
Thermal reliefs are used in PCB design to retain heat in a specific area of the copper pad to aid in soldering. They are also used to prevent excessive heat from flowing away from the pad into the surrounding plane during soldering or rework.
Here's when to use thermal reliefs for your ground plane:

  1. During Soldering: If you are manually soldering or reworking components, use thermal relief pads for the ground plane. The thermal isolations make it easier to solder the through-hole components to the ground plane because they prevent the heat from being conducted away.
  2. High Current Paths: For high current paths, you'd want a large amount of metal for conduction. In this case, using a plane for GND can be beneficial, which might imply the use of thermal relief terminals at high current locations.
However, there are also cases when not to use thermal reliefs:

  1. High-Frequency Designs: If your PCB design is for high-frequency applications, you may want to go with direct connections. Since aesthetically pleasing thermal relief spokes can act as inductive elements, they have the potential to disrupt the performance of high-frequency circuits.
  2. Thermal Management: When a plane is being used primarily for thermal management, connecting through-hole component terminals directly to the plane could help spread heat more effectively across the PCB.
In conclusion, whether to use thermal reliefs or not is highly dependent on your specific application. You must consider the thermal and electrical requirements of your design. Please take this into consideration when designing your LM2596 Buck converter project.
11mo
Do you have advice for selecting an IC for a buck converter module? What paramet...
@copilot Do you have advice for selecting an IC for a buck converter module? What parameters are important?
11mo
When selecting an Integrated Circuit (IC) for a buck converter module, there are multiple factors to consider. Here are some important parameters:

  1. Input Voltage Range (VIN): Make sure that the IC can handle the range of input voltages that the IC will receive in your circuit design. Also, keep in mind that higher input voltages generally mean a higher heat dissipation which could require more advanced cooling solutions.
  2. Output Voltage (VOUT): Identify an IC with an output voltage suitable for the specific requirements of your system.
  3. Output Current (IOUT): The IC should be able to handle the maximum output current that your load is anticipated to draw.
  4. Conversion Efficiency: A higher efficiency means less wasted power. The IC's datasheet should provide efficiency curves based on load current and input/output voltage.
  5. Switching Frequency: The IC's switching frequency will determine how large or small the external components (like inductors and capacitors) need to be. Higher frequency commonly allows for smaller components but can result in lower efficiency and more radiated EMI.
  6. Protection Features: Look for features like over-current protection, thermal protection, under-voltage lockout (UVLO), and short circuit protection to ensure that the IC and your electronics are protected under abnormal conditions.
  7. Operating Temperature: It refers to the IC's permissible operating temperature range. It should align with your detection environment to ensure stable operation.
  8. Package Type and Pin Count: This refers to the physical attributes of the IC, it should be chosen based on your design's size constraints and assembly capabilities.
Please note that the appropriateness of an IC is often a balance between the factors above and may involve some trade-offs. Ensure to select an IC that best suits your specific application and environment on all parameters.
11mo
what do I need to know when designing a PCB for a buck converter that uses the L...
@copilot what do I need to know when designing a PCB for a buck converter that uses the LM2596? Include information on stackup, and trace widths for power traces and standard traces
1y
When designing a PCB for a buck converter with LM2596, several factors need to be taken into account:

  1. Stackup: For most basic applications a 2 layer board should be sufficient, but for higher power applications and better thermal performance, a 4-layer board can provide better heat dissipation. The stackup might look like this for a 4-layer board: Top Layer (Signal Trace), Inner Layer 1 (Ground), Inner Layer 2 (Power), Bottom Layer (Signal Trace).
  2. Trace width for power traces: Power traces should be wide enough to handle the current. The trace width depends on the current it needs to carry, the trace thickness and acceptable temperature rise. You can use a trace width calculator online to get an exact width. However, as a typical application of an LM2596 might deliver output currents up to 2A, a trace width of approximately 2mm for a 1oz/ft² copper PCB (which is typical) should be sufficient.
  3. Trace width for standard traces: Signal, control or feedback traces can typically be narrower than power traces. A commonly used width for standard signals is 0.2mm to 0.3mm. However, keep in mind the constraints on minimum trace width and separation given by the PCB manufacturer.
  4. Layout: Power components like inductor, input and output capacitors should be placed as close as possible to IC pins to minimize the loop area and improve efficiency. The catch diode should be directly connected to the LM2596's SW pin, and its other end should be connected close to the ground pin.
  5. Thermal considerations: The LM2596 has a thermal pad which needs to be properly soldered to the board to ensure good heat transfer. Therefore, a large copper plane under the IC and connected to the ground (using thermal vias) can help in heat dissipation.
  6. Feedback Path: Keep the feedback path (R1, and R2 in your schematic) as short as possible and away from noisy areas of the board (such as the inductor or the catch diode) to prevent inducing noise into the feedback signal.
Remember that these are broad guidelines and exact values can vary depending on the specific application, part manufacturer suggestions, and PCB fabrication capabilities. Always refer to the datasheet specifically for your device and the fabrication guidelines from your PCB manufacturer.
1y
Are there any additional routing and layout tips you can provide?
1y
Yes, certainly, here are some additional routing and layout tips:

  1. Input filtering: The input capacitor (C2) should be situated as close as possible to the VIN pin of the LM2596 to filter the input voltage supply. The ground pin of this capacitor should connect directly to the ground plane with a via.
  2. Ground plane: Taking advantage of one large continuous ground plane can help reduce noise and interference. Avoid creating a "split" ground plane, as this could lead to unintended current paths which may increase noise in your circuit.
  3. Placement of Feedback Resistor: In your schematic, the feedback resistors (R1 and R2) form the feedback loop for the buck converter. Ideally, you should place these resistors close to the feedback (FB) pin of the IC to minimize the loop area and reduce susceptibility to noise.
  4. Decoupling capacitors: Decoupling capacitors for the IC should be placed as closely as possible to the IC power pins.
  5. Routing Power Traces: Route power traces (VOUT and VIN in the design) first and keep them short and direct. The power path from the input (VIN) to the output (VOUT) should optimally form a "closed loop" (meaning, a traceable path without lifting the pen) which covers VIN, the input capacitor (C2), the inductor (L1), the output capacitor (C3), and back to VIN.
  6. Inductor Placement: The inductor L1 should be placed close to the output (OUT) pin of the LM2596 to reduce switch node ringing and EMI.
  7. Switching Node Layout: The path from the SW pin of the LM2596, which includes the inductor (L1) and Schottky diode (D1), should be kept as small as possible to minimize radiation from this high-frequency, high-current path.
  8. Routing feedback traces: The feedback trace which connects the feedback network (R1, and R2) and feeds back to the FB pin on the LM2596, is a sensitive node and should be kept away from noisy areas, such as the SW node of the LM2596 to prevent interference.
  9. Thermal via: If you are using a 4 layer PCB, adding multiple thermal vias on the thermal pad (EPAD) of the LM2596 will help with heat dissipation.
  10. Component Placement: Finally, tactile components like connectors or switches should be placed in easily accessible places. Consider the final use case and casing of your product to avoid accessibility issues.
Remember these tips are generalized good practices and might vary with specific designs and constraints. Always refer to the IC datasheet for specific advice.
1y
Can you explain how this all works in the context of a buck-converter? How do th...
@copilot Can you explain how this all works in the context of a buck-converter? How do these components work together to allow the buck-converter to function and how does it work?
1y
Sure, I'll explain this circuit in the context of a buck converter.
A buck converter is a DC-to-DC power converter that is used to step down voltage (from its input to its output) while stepping up current. The LM2596 is an adjustable-output, step-down (buck) switching regulator often used in this type of application.
Components working together:

  1. U1 (LM2596):

    • This is the heart of our buck converter. It continuously switches its output on and off (represented by the ON/OFF pin), creating a square wave. This high-frequency square wave is used to "pump" energy into the inductor and capacitor.
  2. L1 (Inductor):

    • It acts as an "energy buffer". When the switch in the LM2596 is on (ON/OFF pin is high), energy is stored in the inductor. When the switch is off, the energy in the inductor is transferred to the load and C2.
  3. D1 (Diode):

    • It provides a path for the inductor's current when the LM2596 switch is off. It also prevents the current from flowing back to the LM2596.
  4. C2 and C3 (Capacitors):

    • They act as energy storage elements and smooth out the voltage waveform that is produced by the inductor and diode. The result is a steady DC voltage at the output.
  5. R1 and R2 (Resistor):

    • These resistors form a voltage divider that feeds back a sample of the output voltage to the FB pin of U1. The feedback pin lets the LM2596 adjust its duty cycle (the ratio of the on time to the off time) to maintain a constant output voltage regardless of input voltage or output load changes.
  6. VIN and VOUT (Connectors):

    • These connectors are used to connect this buck converter to the larger system. VIN is connected to the 12V input and VOUT serves the 5V output.
As for its working:
i) Initially when power is applied (VIN), the LM2596's internal switch closes, causing current to flow through L1 (via U1:OUT pin) and starts to store energy. ii) As this current flow builds up, it passes through the load, increasing the output voltage. iii) Part of this output voltage is fed back to the LM2596 via the R1/R2 resistor network to the FB pin. It uses this feedback to regulate the output. iv) When the FB pin voltage reaches a threshold, the switch opens and the situation reverses. The energy stored in L1 starts to deplete, descends to the load and into C2, C3. This continues until the switch triggers back on and the cycle repeats. iv) The higher the input voltage or the lighter the load, the shorter the time the switch is 'on' and longer it stays 'off' (and vice versa) and by continuously adjusting this, the LM2596 can manage a constant output voltage.
So, to concisely summarize: the buck converter works by switching on and off very fast, storing energy in L1 when it's on, and releasing it to the load when it's off. It uses the capacitors to smooth out the voltage fluctuations and a feedback path to maintain a stable output.
1y
Can you explain each Component’s Function in the schematic?
@copilot Can you explain each Component’s Function in the schematic?
1y
Sure, here's a breakdown of each component's role in the schematic circuit:

  • U1 (LM2596): This is the main component of the circuit. It is a buck regulator IC that reduces the input voltage down to the desired level (5V output in this case), while maintaining the load current.
  • L1: This is an inductor used to store energy for later release. It smooths the output of the buck converter (U1).
  • D1: This is a Schottky diode used for its low forward voltage drop and quick recovery time. It allows current to flow back into the inductor (L1) when the switch inside U1 is off, maintaining continuous flow and reducing ripple.
  • C1, C2, C3: These capacitors filter the voltage before and after conversion, smoothing out the ripple due to the switching mode operation. C1 is usually deployed at input, C2 at output and C3 at feedback for stability and noise reduction.
  • R1, R2: These are setting resistors for the LM2596 to set the output voltage. They form a voltage divider used to feed back to the regulator (U1). The feedback signal determines the duty cycle of the buck converter.
  • VIN, VOUT: These are input and output voltage connectors. VIN is connected to the DC input (e.g., a power supply or battery). VOUT is connected to the load which requires the regulated 5V.
  • GND: It represents the common ground reference or zero voltage reference point for all the components in the circuit. It's important for voltage measurements and return paths for currents.
  • +12V, +5V: These are power nets representing the input source voltage (12V), and the required output voltage (5V), respectively.
Note: There is a listed component, ON/OFF, which doesn't seem to have a role in the presented schematic as it isn't connected to any other components.
1y
Hey, I’m Copilot, your AI design assistant. I can help you brainstorm ideas, deb...
Hey, I’m Copilot, your AI design assistant. I can help you brainstorm ideas, debug problems, research components, and even make wiring connections for you. Ask me questions like:

  • @copilot I'm designing a PCB for a medical device that measures heart rate and temperature. Can you give me the list of components I will need?
  • @copilot How would I connect these parts to make the LED flash at 1kHz?
  • @copilot can you choose 4 digital pins on the ATMega328P-AU that I have here to use as GPIO given that I am already using some pins for reset, the external clock, UART, and I2C.
Chat with me by tagging @copilot on comments or in the chat.
1y
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Designator
Ruleset
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
*`REF`*
Override rule for *`REF`*
Layout
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.