• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
me puedes hacer un sircuito de amplificador de audio sencillo

me puedes hacer un sircuito de amplificador de audio sencillo
1y
Someone is typing...
recommend a replacement for D2.

podrias cambiarlo por diodos zener y si es asi, cuales y como serian
1y
@copilot recommend a replacement for D2.
1y
To recommend a replacement for D2, it's important to first understand the role it plays in your ESP32-WROOM-32D based device, as well as its specifications. D2 is listed with an MPN (Manufacturer Part Number) of 82400102 and is utilized for USB data $IO1$ and $IO2$ paths in your design. This suggests it's functioning as a USB ESD (Electrostatic Discharge) protection device for the USB-C connection, given its connection to both the D+ and D- lines $USBDP$ and $USBDN$.
For a replacement, you'll need a component that matches or exceeds the capabilities of D2 in terms of:
  • ESD protection level
  • Capacitance (to not distort high-speed data lines)
  • Package size and pinout (for PCB compatibility)
One commonly used and readily available replacement is the "TPD3E001DRLR" by Texas Instruments. This component offers ESD protection for two data lines and meets the IEC 61000-4-2 (Level 4) ESD protection standard, which is quite common for USB applications. The low capacitance $<1$ pF$)$ ensures minimal signal distortion for high-speed data lines, making it suitable for USB 2.0 and above.
Specifications for TPD3E001DRLR:
  • Manufacturer: Texas Instruments
  • ESD Protection: Up to ±15kV (IEC61000-4-2 Air gap discharge) and ±8kV (IEC61000-4-2 Contact discharge)
  • Data Line Protection: 2 Lines
  • Capacitance: Typically $<1$ pF
  • Package: SOT-5X3 (Compatible with surface-mount technology and relatively small)
You'll need to verify the package type (SOT-5X3) and pinout to ensure it fits your PCB layout and design constraints.
Always remember to consult the datasheet for the TPD3E001DRLR (or any replacement you consider) and ensure it meets all your circuit requirements before making a final decision.
1y
podrias cambiarlo por diodos zener
1y
Sí, cambiar un protector ESD por diodos Zener es una alternativa viable en muchas aplicaciones de protección contra descargas electrostáticas, sobre todo si estás buscando una solución más simple o con componentes que tal vez ya tienes a mano. Los diodos Zener pueden ser utilizados para limitar la tensión a un valor específico, lo cual es útil para proteger las líneas de datos contra sobretensiones y transitorios.
Para reemplazar el dispositivo de protección ESD D2 con diodos Zener en una aplicación de USB, considerarías usar dos diodos Zener, uno para cada línea de datos USBDPUSBDP y USBDNUSBDN. Asegúrate de seleccionar diodos Zener con una tensión de Zener que sea adecuada para la lógica de tu dispositivo. Para USB 2.0, esto significa preferiblemente una tensión inferior a 3.6V, para proteger sin interferir con los niveles de señal.
Configuración recomendada:
  • Para USBDPUSBDP (D+): Conecta un diodo Zener de forma que el cátodo esté conectado a USBDPUSBDP y el ánodo a GND.
  • Para USBDNUSBDN (D-): De manera similar, conecta un diodo Zener para esta línea, con el cátodo conectado a USBDNUSBDN y el ánodo a GND.
Consideraciones para el Zener:
  • Tensión de Zener: como mencionado, aproximadamente 3.3V sería adecuado para aplicaciones USB para proteger contra sobretensiones sin afectar la lógica de voltaje USB.
  • Potencia: Asegúrate de seleccionar diodos Zener que puedan manejar la potencia resultante de la corriente máxima esperada en caso de una descarga ESD.
  • Capacitancia: Mientras que para propósitos de protección ESD la capacitanza no es tan crítica como en filtros de señales de alta velocidad, es bueno considerar la menor posible para evitar afectar las señales de datos USB.
Ejemplo de los Componentes:
  • Modelo de Diodo Zener: BZX84C3V3-7-F
    • Fabricante: Diodes Incorporated
    • Tensión de Zener: 3.3V
    • Paquete: SOT-23
Conexiones recomendadas:
  • Conecta el cátodo del primer diodo Zener a USBDPUSBDP:1 y el ánodo a GND.
  • Conecta el cátodo del segundo diodo Zener a USBDNUSBDN:1 y el ánodo a GND.
Recuerda, estos son ejemplos genéricos y podrías necesitar ajustar las especificaciones concretas de tus componentes basados en las necesidades específicas de tu circuito, incluyendo los niveles de corriente y voltaje operativos. Como siempre, consultar la hoja de datos del componente para verificar que cumpla con las especificaciones requeridas por tu aplicación.
1y
voy a cambiarlo por un BZX84C3V3LT1G
1y
El BZX84C3V3LT1G es un diodo Zener de 3.3V, una buena elección para la protección contra sobretensiones en las líneas de datos USB debido a su voltaje de Zener adecuado que se alinea con los niveles lógicos de USB. Este componente puede ayudar a proteger tu circuito limitando la tensión a aproximadamente 3.3V, lo cual es seguro para la mayoría de los dispositivos lógicos y circuitos integrados alimentados a 3.3V.
Para implementarlo como reemplazo de D2 en tu diseño, usa la siguiente configuración:
Para la Línea de Datos D+ (USBDPUSBDP):
  • Conecta el ánodo del BZX84C3V3LT1G a $GND$ (para esta conexión utiliza el net afb0e4353eb012c6d1168a551acc0159 que conecta a tierra).
  • Conecta el cátodo al net ce09f49edf8a28c571c2cc99ee27fbf5 que corresponde a $USBDP$.
Para la Línea de Datos D- (USBDNUSBDN):
  • Conecta el ánodo de otro BZX84C3V3LT1G a $GND$.
  • Conecta el cátodo al net 7e2f075d21317b91e0ed7763372ca858 que corresponde a $USBDN$.
Recuerda que necesitarás dos diodos Zener, uno para cada línea de datos. Asegúrate de verificar la orientación correcta al soldarlos en la placa, ya que una inversión de los diodos puede resultar en que la protección no funcione correctamente o incluso en un cortocircuito en las líneas de datos.
Consideraciones Finales:
  • Capacitancia: Aunque los diodos Zener usualmente no tienen una capacitancia tan baja como algunos dispositivos de protección ESD específicos, en muchas aplicaciones USB, este nivel de capacitancia no debería interferir significativamente con la señal.
  • Respuesta a ESD: Aunque los diodos Zener pueden proporcionar cierta protección contra ESD, los dispositivos de protección especializados pueden ofrecer respuestas más rápidas y rangos de protección más altos específicos para ESD. Asegúrate de que este nivel de protección es adecuado para tu aplicación.
  • Disipación de Potencia: Verifica que el rango de potencia del BZX84C3V3LT1G sea adecuado para las corrientes esperadas en tu aplicación, especialmente bajo condiciones de falla o durante eventos ESD.
La selección del BZX84C3V3LT1G y su implementación debe ser validada con pruebas prácticas, sobre todo para aplicaciones sensibles o en entornos donde se esperan eventos ESD frecuentes o severos.
1y
Someone is typing...
3
please explain what R1 does.

@copilot please explain what R1 does.
8mo
R1R1 in your circuit has a resistance of 10kΩ and is part of the net named "Net 23." It is connected to the enable pin (EN) of the ESP32-WROOM-32D module.
Here's what R1R1 does:
  • Pull-up Resistor: It acts as a pull-up resistor to ensure that the EN pin of the ESP32 is kept high (enabled) when there is no active driving signal on the pin.
  • Ensures Logic Level: By connecting it to the +3V3 power rail, it ensures that the ESP32 stays enabled under normal operating conditions.
Pull-up resistors are commonly used in digital circuits to prevent floating inputs, which can lead to undefined states. In your circuit, R1R1 helps to stabilize the enable line by defaulting it to a high state.
8mo
Someone is typing...
6
recommend a replacement for D2.

@copilot recommend a replacement for D2.
1y
For the replacement of D2, which is highlighted as having pins named IO1, GND, VDD, and two pins named IO2, it seems like D2 is not purely a diode in the traditional sense but rather a component with specialized functionality, possibly a protection device or a level shifter given the context of the USB interface in your project. Würth Elektronik manufactures a variety of components, so without more specific functionality described for D2, I'm assuming it might be used for USB data line protection or signal conditioning.
Given these assumptions, a suitable replacement could be a TVS (Transient Voltage Suppressor) diode array or an ESD (ElectroStatic Discharge) protection device with a similar pinout and voltage ratings that match the USB data line requirements. One commonly used component for USB data line protection is the USBLC6-2SC6 made by STMicroelectronics. It's designed to protect high-speed interfaces like USB 2.0, and it features low capacitance and strong ESD protection.
Here are the considerations:
  • Voltage Levels: Ensure that the replacement component supports the voltage levels utilized in your USB interface.
  • Packaging and Pin Configuration: It should have a similar pin configuration or something that you can adapt to your current layout with minimal changes.
  • ESD Protection Level: Look for high ESD protection capabilities, typically in the range of ±15kV\pm15kV to ensure robust protection for your USB interface.
Of course, depending on the exact function of D2 in your circuit (if it's for level shifting, impedance matching, or another purpose aside from ESD protection), the recommendations could vary. Always verify the datasheet of the proposed replacement to ensure compatibility with your application's requirements.
1y
Someone is typing...
2
ESP_RX
ESP_TX
GPIO34
+5V
GPIO27
GPIO25
ESP_IO0
GPIO16
GPIO18
GPIO12
GPIO33
GPIO19
GPIO36
GPIO32
GPIO15
GPIO13
GPIO22
GPIO2
GPIO4
GPIO26
GPIO39
ESP_EN
GPIO14
GPIO21
GPIO23
GPIO5
GPIO17
GPIO35
+3V3
GPIO33
GND
GND
GPIO17
GPIO21
GPIO32
GPIO5
RX
GPIO22
GPIO19
GPIO26
GPIO23
GPIO13
GPIO12
GPIO15
+5V
+3V3
GPIO25
GPIO16
TX
GPIO18
GPIO36
GPIO34
GND
GPIO39
GPIO4
GPIO2
GPIO35
GPIO14
GPIO27
GPIO0
RST

ESP32-WROOM-32D Module

ESP32-WROOM-32D Module
Description

Created
Last updated by vasy_skral
1 Contributor(s)
vasy_skral

Controls

Availability & Pricing

DistributorQty 1
Digi-Key$1.06–$2.47
LCSC$1.38–$1.90
Mouser$2.42

Assets

Simulation

µs

Simulation Speed

Schematic Design Issue Analysis

Analyze this schematic for potential design issues. Identify electrical, logical, or connectivity flaws, including incorrect net connections, missing or misplaced components, incorrect pin assignments, power distribution issues, and potential signal integrity concerns. Check for compliance with best practices such as proper decoupling capacitor placement, pull-up/pull-down resistor usage, current limiting resistors, and correct net labeling. Provide a direct schematic-level analysis—do not generate hypothetical examples. Focus solely on identifying real issues in the provided schematic and suggest specific corrections or optimizations.

Using

General
Project
Below is an analysis based on the real errors and review results extracted from the schematic:
  1. Airwire and Connectivity Errors
    • The built‐in DRC “Airwires” report lists dozens of missing or improper connections (for example, errors on nets involving pins such as GPIO33, GPIO17, ESP1:9, etc.). These indicate that several signal nets coming from the ESP32 (ESP1) and their associated terminal bodies are not properly routed.
    • Correction: Review each airwire error and adjust the net connections so that each terminal (using the center of the pad) is joined to the proper net. Eliminate generic “Net X” naming in favor of meaningful names (for example, renaming a net for a signal like “UART_TX” or “I2C_SDA”) to ease identification and troubleshooting.
  2. Power Distribution and Decoupling Concerns
    • The voltage regulator (U1) and main module power pins must be served by proper decoupling. Although several capacitors (e.g. C11, C8, C4) exist in the design, it is not evident that they are physically placed close to both the input (VIN) and output (VOUT/TAB) pins of U1.
    • Correction: Ensure that one 0.1 µF (or similar high-frequency) decoupling capacitor is placed as near as possible to each power pin—both at the regulator and the ESP32 module—to minimize supply noise.
  3. Pull-Up/Pull-Down Resistor Usage
    • The schematic does not show explicit pull-up resistors on any lines that would typically require them (for example, on I²C SDA/SCL or possibly on reset/enable lines).
    • Correction: Verify if the ESP32 and CH340C (the USB-to-serial converter) require external pull-ups on open-drain signals or reset lines. If so, add suitable resistor components with industry‑standard values (typically 4.7 kΩ to 10 kΩ for I²C) in the schematic.
  4. Incorrect or Generic Net Labeling
    • A number of nets are labeled generically (e.g., “Net 1”, “Net 3”, etc.) which makes it unclear which signals are being carried. This can lead to signal integrity issues and difficulties in troubleshooting.
    • Correction: Rename nets with meaningful identifiers (such as “3V3”, “GND”, “UART_TX”, “UART_RX”, etc.) to ensure clarity and proper connectivity.
  5. Connector and Pin Assignment Verification
    • The USB1 USB connector and IC1 chip must be checked against their datasheets to confirm that the pin assignments (e.g. CC, DP, DN for USB; TXD/RXD for CH340C) are correctly routed. Misassigned pins can result in malfunctioning communication or power delivery.
    • Correction: Revisit the datasheets for these components and confirm that each pin is connected to the correct net and that any necessary resistive or filtering networks (especially on the USB connector) are implemented.
  6. Signal Integrity Concerns
    • Some high-speed signals from the ESP32 (for example, clock or data lines on the USB interface) might be subject to impedance mismatches if routed through generic net portals without controlled impedance or proper trace matching.
    • Correction: Although detailed PCB layout constraints are not examined at the schematic stage, mark these nets clearly and plan for careful controlled‑impedance routing in the PCB phase.
  7. Grounding Strategy and Duplicate Components
    • The schematic shows several instances of the ground component. While using a dedicated c2e41937-4268-256c-7ae9-cb8cfb60aed3 is good practice, consistency is key. Duplicate ground symbols or misconnected ground nets can lead to ground loop issues.
    • Correction: Standardize the ground referencing across the schematic by ensuring that all ground pins and net portals are tied to a single, correctly placed ground symbol.
Summary of Suggested Corrections/Optimizations:
  • Resolve Airwire Errors: Systematically address every reported airwire by ensuring that all pin and net connections are made at the correct pad centers and that net names are updated to reflect their function.
  • Improve Decoupling: Place decoupling capacitors as close as possible to the power pins of the U1 and the ESP32 module.
  • Add Necessary Pull-Ups: Evaluate whether any communication or reset pins need pull-up resistors and add them with the proper standard resistance values.
  • Rename Generic Net Labels: Replace generic labels (e.g., “Net 1”, “Net 3”) with descriptive names to enhance clarity and reduce risk of misrouting in later PCB layout.
  • Verify Connector/Pin Assignments: Cross-check the USB and serial converter pinouts with their datasheets and adjust connectivity if required.
  • Plan for Signal Integrity: Identify high-speed signal nets and mark them for controlled impedance routing during PCB design.
  • Consolidate Ground Connections: Use a single ground strategy with the dedicated c2e41937-4268-256c-7ae9-cb8cfb60aed3 component to ensure a robust common return path.
Addressing these points should improve the electrical correctness, logic, and overall robustness of the schematic design.
Review airwire and decoupling issues
Identify connectivity and pull-up concerns
Suggest corrections for power and signal integrity

Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports issues with Auto-Layout if Copilot cannot route something or must ignore a configuration.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.