• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
Realiza un circuito que sea como un tipo semaforo

has las conexiones
9mo
@copilot Realiza un circuito que sea como un tipo semaforo
9mo
Para crear un circuito tipo semáforo en tu proyecto Arduino Uno Shield, podrás utilizar LEDs para representar las luces del semáforo (rojo, amarillo y verde). Utilizaremos pines digitales para controlar los LEDs. Aquí tienes una sugerencia para conectar y programar tu semáforo:
Componentes Necesarios:

  • 1 x LED rojo
  • 1 x LED amarillo
  • 1 x LED verde
  • 3 x resistencias de 220Ω (para limitar la corriente hacia los LEDs)
  • Arduino Uno
Dado que la descripción de tu proyecto no especifica los componentes exactos más allá de los pines disponibles en el Arduino Uno, asumiré que tienes LEDs y resistencias adecuados a mano. Si no es así, ajusta los componentes según lo que tengas disponible.
Conexiones:

  1. LED Rojo: conecta el ánodo (lado largo) a través de una resistencia de 220Ω al pin digital D2_INT0. Conecta el cátodo (lado corto) a uno de los pines GND.

    • Connect D2_INT0 to R1:1 (ánode LED rojo), y R1:2 to GND.
  2. LED Amarillo: conecta el ánodo a través de una resistencia de 220Ω al pin digital D3_INT1. Conecta el cátodo a uno de los pines GND.

    • Connect D3_INT1 to R2:1 (ánodo LED amarillo), y R2:2 to GND.
  3. LED Verde: conecta el ánodo a través de una resistencia de 220Ω al pin digital D4. Conecta el cátodo a uno de los pines GND.

    • Connect D4 to R3:1 (ánodo LED verde), y R3:2 to GND.
Recuerda utilizar resistencias para proteger los LEDs. Las resistencias pueden estar en la placa de experimentación y conectadas en serie con los LEDs para simplificar las conexiones.
Programación:
Una vez conectado, necesitarás cargar un código al Arduino para controlar los LEDs. La idea básica es encender y apagar cada LED en un patrón que simule las luces de un semáforo. Aquí tienes un pseudocódigo que puedes adaptar:

Cpp


void setup() {
  pinMode(D2_INT0, OUTPUT); // LED Rojo
  pinMode(D3_INT1, OUTPUT); // LED Amarillo
  pinMode(D4, OUTPUT);      // LED Verde
}

void loop() {
  digitalWrite(D2_INT0, HIGH); // Enciende el LED rojo
  delay(5000);                 // Espera 5 segundos
  digitalWrite(D2_INT0, LOW);  // Apaga el LED rojo
  
  digitalWrite(D3_INT1, HIGH); // Enciende el LED amarillo
  delay(2000);                 // Espera 2 segundos
  digitalWrite(D3_INT1, LOW);  // Apaga el LED amarillo
  
  digitalWrite(D4, HIGH);      // Enciende el LED verde
  delay(5000);                 // Espera 5 segundos
  digitalWrite(D4, LOW);       // Apaga el LED verde
}
Asegúrate de ajustar los tiempos de espera (delay()) según sea necesario para que coincidan con los tiempos reales que desees para tu semáforo.
Esta es una forma sencilla de crear un semáforo. Puedes expandir el proyecto incluyendo más LEDs para peatones o utilizando entradas como botones para pedir cruzar.
9mo
Someone is typing...
how to add a ir sensor into ardino

@copilot how to add a ir sensor into ardino
1y
To incorporate an Infrared (IR) sensor into your Arduino Uno shield project, you will first need to add the IR sensor as a component. This can be done by using the Flux library to find a suitable IR sensor part.
Here is a general process to add an IR sensor to an Arduino Uno:

  1. In your Flux project, access the Flux library and search for an IR sensor. Find a suitable one for your application, considering its features and compatibility with your Arduino Uno.
  2. Once you have chosen an IR sensor part, you will need to place it into your schematic. To do so, select the part in the library and then click on the desired location within your schematic.
  3. After placing the IR sensor in the schematic, you will need to design the IR sensor interface. Typically, an IR sensor will interface with the Arduino through a digital or analog pin, which corresponds to a terminal in the schematic. Look up the specific requirements of your chosen IR sensor.
  4. To physically connect the IR sensor's output pin (often labeled as OUT) to the Arduino, you can wire it to a specific Arduino digital input terminal in your schematic. For example, you might wire it to the D2_INT0 terminal. You could specify this connection as follows:
Wire D2_INT0 (pin) of Arduino_Uno_Shield (designator XA1) to OUT (pin) of IR_Sensor (designator: XX)

  1. Be sure to also connect the power (VCC/5V and GND) pins of the IR sensor to the respective terminals on the Arduino (like SPI_5V for power and GND for ground, based on your project description).
  2. Once you have connected the sensor in the schematic, you will also need to update the PCB layout to reflect these changes.
Please note that the specific process might vary depending upon the capabilities of your chosen IR sensor, so always consult the datasheet of the IR sensor while proceeding with the connection. Remember to check the voltage levels and the pin configuration for the IR sensor as well.
Source(s):
1y
Someone is typing...
2
XA1

Arduino_Uno_Shield_Old_NO_Footprint

Arduino_Uno_Shield_Old_NO_Footprint
Description

Created
February 18th 2021
Last updated by vasy_skral
4 years ago
1 Contributor(s)
vasy_skral

Controls

Properties

Manufacturer Part Number
Arduino_Uno_Shield
Designator Prefix
XA

Availability & Pricing

No results found.

Assets

    DefaultThumbnail
  • thumbnail
    Arduino-Uno-Shield

    id=Arduino-Uno-Shield

Simulation

µs

Simulation Speed

how to get a sensor in same page
@copilot how to get a sensor in same page
1y
Adding a sensor to your project in Flux is reasonably straightforward. But, I'll require more specific details about the type of sensor you want to use. Are you referring to a temperature sensor, light sensor, motion sensor, pressure sensor, or some other type of sensor?
Once you provide the required details, I can assist you further in incorporating that certain sensor into your Arduino Uno Shield project.
General steps would involve selecting the appropriate sensor from the components library, placing it in your schematic, and wiring it to the correct pins on the Arduino Uno Shield. Pins would be chosen based on the sensor's requirements and Arduino Uno Shield capabilities. Please share more about the type of sensor you would like to add.
Source(s):
1y
Encendido de lus que responda al sonido
1y
Para encender una luz en respuesta al sonido, necesitarás un módulo de sensor de sonido. Este tipo de sensor puede detectar los niveles de sonido en el entorno y proporcionar una señal de salida que puedes usar para controlar la luz.
Aquí hay un ejemplo sobre cómo puedes hacerlo:

  1. Coneccion del Sensor de Sonido:

    • Conecta el pin VCC del sensor de sonido a 5V en la placa Arduino Uno.
    • Conecta el pin GND del sensor de sonido a uno de los pines GND en la placa Arduino Uno.
    • Conecta la señal o el pin de salida del sensor de sonido a uno de los pines digitales en la placa Arduino Uno, por ejemplo, D2.
  2. Coneccion de la Luz (específicamente un LED en este ejemplo):

    • Conecta el cátodo (terminal negativo) del LED a otro pin GND en la Arduino Uno.
    • Conecta el ánodo (terminal positivo) del LED a otro pin digital en la Arduino Uno, por ejemplo, D13.
  3. Código: Aquí hay un ejemplo de cómo podría ser el código en la Arduino IDE:

C


// Define pin numbers
const int soundSensorPin = 2; // Sensor output connected to Arduino pin D2
const int ledPin = 13;        // LED connected to Arduino pin D13

void setup() {
  pinMode(soundSensorPin, INPUT);
  pinMode(ledPin, OUTPUT);
} 

void loop() {
  int soundLevel = digitalRead(soundSensorPin);

  if (soundLevel == HIGH) {
    digitalWrite(ledPin, HIGH);  // Turn on the LED if sound is detected
  }  else {
    digitalWrite(ledPin, LOW);   // Turn off the LED if no sound is detected
  } 
} 
En el código anterior, leemos la señal proveniente del sensor de sonido. Cuando se detecta sonido, la señal será HIGH y la luz se encenderá. Cuando no se detecta sonido, la señal será LOW y la luz se apagará. Este es un ejemplo muy básico y es posible que necesites ajustarlo dependiendo de las especificaciones de tu sensor de sonido y tus requerimientos específicos.
Fuente(s):
Nota: Recuerda que trabajar con componentes electrónicos siempre implica ciertos riesgos. Por lo tanto, siempre asegúrate de seguir las instrucciones y manejar los componentes de manera segura.
Source(s):
1y
in a same page
in a same page
1y
how to get a sensor
how to get a sensor
1y
crea un circuito en donde se controle a dos servomotores con un potenciometro, u...
crea un circuito en donde se controle a dos servomotores con un potenciometro, uno gira en sentido horario y el otro antihorario, esto en en arduino uno
1y
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reac...
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reach me at any time by tagging me on comments or in the chat with my handle, @copilot.
1y
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports components that have been modified using the "!important" flag.
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.