• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
explain this project.

@copilot explain this project.
1y
This project appears to be a LoRa-E5 transceiver module, which is an 868MHz/915MHz IoT module by Seeed Studio, featuring the STM32WLE5JC MCU, an ARM Cortex-M4 core-based SoC integrated with LoRa transceiver. This module is often used to build long-range wireless IoT networks.
The LoRa-E5 is popular in IoT applications due to their long-range communication capability, lower power consumption, and the secured LoRaWAN protocol.
The pins of the module are recognized as independent components in the project, which is why you have designators like PB15, PC0, GND, VCC, PB6, etc. These represent the various terminals or connection points on the LoRa-E5 module.
Here is a brief explanation of the pin designations:

  • PB, PC, PA prefixed designators correspond to the GPIO (General Purpose Input/Output) pins of the STM32 MCU, the numbering after the prefix is the GPIO number.
  • RST likely is the reset pin for the microcontroller.
  • RFIO likely represents RF input/output for the LoRa transceiver.
  • GND is the ground pin
  • VCC represents power supply
As of now, no electrical connections have been made in the project. You will need to establish these connections based on your circuit design requirements. Also, the project notes that all terminals are unspecified which means that you'll need to assign them as inputs or outputs based on your implementation.
1y
Someone is typing...
P1
PB15
PC0
GND
VCC
PB6
PB3
PB10
PB13
RST
GND
PB7
PB5
PA0
PB0
PB4
PA14
GND
GND
PC1
PA9
PA3
RFIO
PA2
PB14
PA15
PB9
PA10
PA13

Wio-E5 (STM32WLE5JC)

Wio-E5 (STM32WLE5JC)
Description

Created
November 7th 2023
Last updated by matthewyu
10 months ago
3 Contributor(s)
jharwinbarrozo
estellatuang
matthewyu

Controls

Properties

Part Type
RF Transceiver Module
Manufacturer Name
Manufacturer Part Number
317990687
Designator Prefix
U

Availability & Pricing

DPNStockQty 1
114K$7.73
12.6K$6.83
10$26.1918
10$8.268

Assets

    Footprint
  • ok.kicad_mod

    id=F-V5

  • Thumbnail
  • thumbnail
    317990687.png

    id=317990687

  • 3d Model
  • lorae5.STEP

    id=3D

  • Default
  • thumbnail
    317990687

    id=default

Simulation

µs

Simulation Speed

como añado un gestor de bateria?
@copilot como añado un gestor de bateria?
1mo
Para añadir un gestor de batería a tu proyecto, primero necesitas seleccionar un controlador adecuado en función de los requisitos de tu sistema, tales como tipo de batería, número de celdas, corriente de carga, etc. Aquí tienes los pasos básicos que puedes seguir:

  1. Seleccionar el gestor de batería:

    • Determina el tipo de batería (Li-ion, NiMH, etc.).
    • Identifica la corriente de carga y voltaje necesarios.
    • Considera funciones adicionales como protección contra sobrecorriente, sobrecarga, balanceo de celdas, etc.
  2. Conexiones básicas:

    • Entrada de alimentación: Conecta el pin de alimentación del gestor al VCC de tu sistema. Por ejemplo, Connect BMS:VCC to VCC:1.
    • GND: Conecta el pin de tierra del gestor al GND de tu sistema. Ejemplo: Connect BMS:GND to GND:2.
    • Batería: Conecta los pines correspondientes a la batería al gestor de batería. Si tu batería tiene pines de B+ y B-, conectalos a los pines de entrada del gestor.
    • Carga: Conecta el pin de salida de carga a donde irá conectada la carga o al sistema que estás alimentando.
  3. Aspectos adicionales a considerar:

    • Termistores: Algunas baterías requieren monitoreo de temperatura. Si tu gestor lo soporta, asegúrate de conectar un termistor adecuadamente.
    • Indicadores LED: Puedes añadir LEDs para indicar el estado de carga.
    • Comunicación: Si el gestor tiene interfaz de comunicación (I2C, SMBus), conecta estas líneas a tu microcontrolador para monitoreo.
  4. Ejemplo de un componente:

    • Un ejemplo común es el BQ24075, que es un gestor de batería para Li-ion/LiPo. También hay gestores como el MCP73831 para proyectos más simples.
¿Tienes algún modelo específico en mente para que pueda asistirte con una integración más detallada?
1mo
vorrei inserire accelerometro e giroscopio
@copilot vorrei inserire accelerometro e giroscopio
2mo
how do i close a component?
@copilot how do i close a component?
8mo
In the context of using Flux.ai, the browser-based electronics CAD program, "closing a component" typically means finishing your work on a component within a schematic or a PCB layout. If by "closing a component" you mean finalizing or completing its placement and connections in your design, here are the general steps you would follow:

  1. Placing the Component: Make sure the component is placed correctly on the schematic or PCB layout. This means it should be in its intended position where it can connect with other components as necessary.
  2. Making Connections:

    • For a schematic, you would draw wires between the pins of your components to logically connect them according to your circuit design.
    • In PCB layout, you need to route the traces between the pins of the components to physically connect them. This might involve selecting the right trace width for your current requirements and ensuring there are no short circuits unless they are part of your design intention.
  3. Assigning Values and Footprints:

    • In the schematic, ensure each component has the correct value assigned to it $e.g., resistance for a resistor, capacitance for a capacitor$.
    • In the PCB layout, make sure each component has a footprint assigned that matches the actual physical component you'll be using.
  4. Checking Connections:

    • Use the Design Rule Check $DRC$ and Electrical Rule Check $ERC$ features to verify that your connections are correct, and you haven't missed any necessary connections or made ones that could cause issues.
  5. Saving Your Work: Frequently save your project to avoid any loss of progress.
If you actually meant "closing" in a different sense, such as removing a component from the schematic/PCB layout or concluding work on a project in Flux.ai, please provide more details so I can offer a more accurate response.
8mo
Hey, I’m Copilot, your AI design assistant. I can help you brainstorm ideas, deb...
Hey, I’m Copilot, your AI design assistant. I can help you brainstorm ideas, debug problems, research components, and even make wiring connections for you. Ask me questions like:

  • @copilot I'm designing a PCB for a medical device that measures heart rate and temperature. Can you give me the list of components I will need?
  • @copilot How would I connect these parts to make the LED flash at 1kHz?
  • @copilot can you choose 4 digital pins on the ATMega328P-AU that I have here to use as GPIO given that I am already using some pins for reset, the external clock, UART, and I2C.
Chat with me by tagging @copilot on comments or in the chat.
1y
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports components that have been modified using the "!important" flag.
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.