Seeed Studio XIAO ESP32S3 Sense a323
Seeed Studio XIAO ESP32S3 leverages dual-core ESP32S3 chip, supporting both Wi-Fi and BLE wireless connectivities, which allows battery charge. It integrates built-in camera sensor, digital microphone. It offers 8MB PSRAM, 8MB FLASH, and external SD card slot. All of these make it suitable for embedded ML, like intelligent voice and vision AI. #SeeedStudio #xiao... show more1 Comment
1 Star
Seeed Studio XIAO ESP32S3 Sense
Seeed Studio XIAO ESP32S3 leverages dual-core ESP32S3 chip, supporting both Wi-Fi and BLE wireless connectivities, which allows battery charge. It integrates built-in camera sensor, digital microphone. It offers 8MB PSRAM, 8MB FLASH, and external SD card slot. All of these make it suitable for embedded ML, like intelligent voice and vision AI. #SeeedStudio #xiao... show more1 Comment
Seeed Studio XIAO ESP32S3 Sense a323
Seeed Studio XIAO ESP32S3 leverages dual-core ESP32S3 chip, supporting both Wi-Fi and BLE wireless connectivities, which allows battery charge. It integrates built-in camera sensor, digital microphone. It offers 8MB PSRAM, 8MB FLASH, and external SD card slot. All of these make it suitable for embedded ML, like intelligent voice and vision AI. #SeeedStudio #xiao... show more1 Comment
DS18B20 od5j
Temperature Sensor Digital, Local -55°C ~ 125°C 9 b, 10 b, 11 b, 12 b TO-92 #commonpartslibrary #integratedcircuit #temperature #sensor #digital... show moreMCP9808 I2C Temperature Sensor
This I2C digital temperature sensor is one of the more accurate/precise we've ever seen, with a typical accuracy of ±0.25°C over the sensor's -40°C to +125°C range and precision of +0.0625°C. They work great with any microcontroller using standard I2C... show more1 Comment
MCP9808 I2C Temperature Sensor 5AFE
This I2C digital temperature sensor is one of the more accurate/precise we've ever seen, with a typical accuracy of ±0.25°C over the sensor's -40°C to +125°C range and precision of +0.0625°C. They work great with any microcontroller using standard I2C... show more1 Comment
TMP1827 4RTx
1-Wire®, ±0.2°C accurate digital temperature sensor with authentication, 2-Kbit EEPROM #CommonPartsLibrary #Sensors #Transducers #Temperature... show moreLM393 IR PROXIMITY SENSOR
A general infrared proximity sensor circuit that can be interfaced with any microcontroller (e.g., Arduino, ESP, etc.). It uses a transmitter (IR LED) and a receiver (photodiode) along with a comparator circuit (LM393N/NOPB) to sense objects. The circuit outputs a digital signal (high/low) based on the sensor's response.... show moreRP2040
RP2040 is a low-cost, high-performance microcontroller device with flexible digital interfaces. Key features: • Dual Cortex M0+ processor cores, up to 133 MHz • 264 kB of embedded SRAM in 6 banks • 30 multifunction GPIO • 6 dedicated IO for SPI Flash (supporting XIP) • Dedicated hardware for commonly used peripherals • Programmable IO for extended peripheral support • 4 channel ADC with internal temperature sensor, 0.5 MSa/s, 12-bit conversion • USB 1.1 Host/Device... show more1 Comment
Supporting Crimson Battle Mech
Entrada de Corriente y Fusible Qué hace: Es el punto de partida. La electricidad de 120V entra a tu prototipo. El fusible es el guardián de seguridad principal. Dónde se conecta: El Cable de Alimentación se conecta al enchufe de la pared. Dentro de la caja, el cable VIVO (el que lleva la potencia, usualmente negro o rojo) se conecta a una patita del Portafusible. Dónde termina: La otra patita del Portafusible es ahora la salida segura del cable VIVO. 2. Fuente de Poder (HLK-PM01) Qué hace: Es el "transformador" que alimenta al cerebro. Convierte los peligrosos 120V en 5V seguros. Dónde se conecta: Sus dos pines de entrada (AC) se conectan a los cables VIVO (justo después del fusible) y NEUTRO de la entrada de corriente. Dónde termina: Sus dos pines de salida (DC) entregan 5V. El pin +5V se conecta al pin VIN del ESP32. El pin GND (tierra) se conecta a un pin GND del ESP32. 3. Sensor de Voltaje (ZMPT101B) Qué hace: "Observa" el voltaje de la línea de 120V de forma segura. Dónde se conecta: Sus dos pines de entrada (AC) se conectan igual que la fuente de poder: al VIVO (después del fusible) y al NEUTRO. Dónde termina: Su pin de salida de señal (Aout o Signal) se conecta a un pin analógico del ESP32 (por ejemplo, GPIO35). También necesita alimentación, así que sus pines VCC y GND se conectan a los pines 3.3V y GND del ESP32. 4. Sensor de Corriente (WCS1600) Qué hace: "Siente" cuánta corriente (amperios) está pasando hacia la licuadora. Dónde se conecta: El cable VIVO de 120V (el que viene del fusible) pasa a través del agujero blanco del sensor. No se conecta eléctricamente, solo pasa por en medio. Dónde termina: La placa del sensor tiene 3 pines de control: VCC se conecta al pin 3.3V del ESP32. GND se conecta a un pin GND del ESP32. Aout (salida analógica) se conecta a otro pin analógico del ESP32 (por ejemplo, GPIO34). 5. Relé de Estado Sólido (SSR-25 DA) Qué hace: Es el interruptor inteligente. Actúa como una compuerta que abre o cierra el paso de la electricidad a la licuadora. Dónde se conecta: Lado de Potencia (AC): El cable VIVO (que ya pasó por el sensor de corriente) se conecta a uno de los terminales de alta potencia del SSR. Lado de Control (DC): El pin de control DC+ del SSR se conecta a un pin digital del ESP32 (por ejemplo, GPIO23). El pin DC- se conecta a un pin GND del ESP32. Dónde termina: El otro terminal de alta potencia del SSR se conecta al terminal "vivo" del tomacorriente final. 6. Tomacorriente de Salida (a la Licuadora) Qué hace: Es el enchufe final donde conectas tu aparato. Dónde se conecta: Su terminal VIVO recibe el cable que viene de la salida del SSR. Su terminal NEUTRO recibe el cable NEUTRO directamente desde la entrada de corriente principal. Dónde termina: ¡Aquí termina el viaje! La licuadora recibe la electricidad controlada y medida por tu prototipo.... show moreSecret Crimson Hoverboard
Circuit Overview The circuit you're describing is a digital counter that uses an LDR (Light-Dependent Resistor) and a transistor to detect wheel rotations. The counter's output is then displayed on a seven-segment LED display. Here's a breakdown of the components and their roles: 1. Wheel Rotation Detection (LDR and Transistor) * LDR: The LDR acts as a sensor to detect changes in light intensity. You can mount it on the wheel' or near it, with a reflective or non-reflective surface attached to the wheel. As the wheel rotates, the LDR will be exposed to alternating light and dark conditions, causing its resistance to change. * Transistor: The transistor (e.g., a 2N2222 NPN BJT) is used as a switch or amplifier. The changing resistance of the LDR is used to control the base current of the transistor. When the LDR's resistance drops (more light), the transistor turns on, and when the resistance increases (less light), the transistor turns off. This converts the analog change in light into a digital ON/OFF signal (a pulse). 2. Counter (7490) * 7490 IC: This is a decade counter, meaning it can count from 0 to 9. The output of the transistor (the pulses) is fed into the clock input of the 7490. Each pulse represents one rotation of the wheel, and the 7490 increments its count accordingly. The 7490 has four outputs (Q0, Q1, Q2, Q3) that represent the BCD (Binary-Coded Decimal) equivalent of the count. 3. BCD to Seven-Segment Decoder (7446) * 7446 IC: The 7446 is a BCD-to-seven-segment decoder/driver. Its job is to take the 4-bit BCD output from the 7490 and convert it into a signal that can drive a seven-segment LED display. It has seven outputs (a, b, c, d, e, f, g), each corresponding to a segment of the LED display. 4. Seven-Segment LED Display * Seven-Segment Display: This display is used to show the count. The 7446's outputs are connected to the corresponding segments of the display. 5. Power Supply and Other Components * Power Supply: A regulated DC power supply (e.g., 5V) is needed to power all the ICs and components. * Resistors: Resistors are used for current limiting (e.g., for the LDR and the LED display) and biasing the transistor. * Capacitors: A capacitor might be used for debouncing the signal from the transistor to prevent multiple counts for a single rotation. Conceptual Connections Here is a step-by-step breakdown of how the components would be connected: * LDR and Transistor: * The LDR and a current-limiting resistor are connected in series across the power supply. * The junction between the LDR and the resistor is connected to the base of the NPN transistor. * The emitter of the transistor is connected to ground. * The collector of the transistor, with a pull-up resistor, becomes the output for the pulse signal. * Transistor to 7490: * The output from the transistor's collector is connected to the clock input of the 7490 IC. * The 7490's reset pins (MR and MS) should be connected to ground for normal counting operation. * 7490 to 7446: * The BCD outputs of the 7490 (Q0, Q1, Q2, Q3) are connected to the BCD inputs of the 7446 (A, B, C, D). * 7446 to Seven-Segment Display: * The outputs of the 7446 (a, b, c, d, e, f, g) are connected to the corresponding segments of the seven-segment display. * Crucially, you need to use current-limiting resistors (e.g., 330Ω) in series with each segment to protect the LEDs from high current. * The common terminal of the seven-segment display is connected to the power supply (for a common anode display) or ground (for a common cathode display). This setup creates a chain reaction: wheel rotation changes light, which changes LDR resistance, which turns the transistor on/off, generating a pulse. This pulse increments the 7490, and the 7490's output is decoded by the 7446, which then displays the count on the seven-segment LED.... show more